ELLIPTIC FUNCTIONS AND ELLIPTIC CURVES

(A Classical Introduction)

Jan Nekovar
0. Introduction

(0.0) Elliptic curves are perhaps the simplest ‘non-elementary’ mathematical objects. In this course we
are going to investigate them from several perspectives: analytic (= function-theoretic), geometric and
arithmetic.

Let us begin by drawing some parallels to the ‘elementary’ theory, well-known from the undergraduate
curriculum.

(0.0.1) Function theory: (below, R(x,y) is a rational function)

Elementary theory This course
arcsin, arccos elliptic integrals
J R(z,\/f(z))dz, deg(f) =2 J R(z,/f(x))dx, deg(f)=3,4
sin, cos elliptic functions
(periodic with period 2m) (doubly periodic with periods wy,ws)
(0.0.2) Geometry:
Elementary theory This course
conics (e.g. circle, parabola ...) elliptic curves
g(z,y) =0, deg(g) =2 g(z,y) =0, deg(g) =3

(e-g y* = f(x), deg(f) =3)
families of elliptic curves
(parametrized by modular functions)

(0.0.3) Arithmetic:

Elementary theory This course
Pythagorean triples rational solutions of
a’+b*=c>  (a,bceEN) gla,y) =0, deg(g) =3
division of the circle (roots of unity) division values of elliptic functions
cyclotomic fields two-dimensional Galois representations
complex multiplication

(0.0.4) Elementary theory from a non-elementary viewpoint. In the rest of this Introduction we are
going to look at the left hand columns in 0.0.1-3 from an ‘advanced’ perspective, which will be subsequently
used to develop the theory from the right hand columns.
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0.1. The circle
Consider the unit circle

C:z?+y*=1
with a distinguished point O = (1,0).

(0.1.0) Transcendental parametrization of the circle. The points on C can be parametrized by the
(oriented) arclength s measured from the point O:

The formulas
(ds)® = (dx)* + (dy)?, 0=d(2® +y*) = 2(xdx + ydy)

yield

2 _ (dy)Q ds dy dx

2 T Y

__Y
dx = . dy, (ds)

hence

s = / Tt (0.1.0.0)
Vit .1.0.
with the inverse function
y = y(s) = sin(s)

and

i.e.

P = (a(s), y(s)) = (cos(s), sin(s)).

(0.1.1) Addition of points on C' (“abelian group law”). We can use the parametrization from (0.1.0)
to add points on C' by adding their corresponding arclengths from O. In other words, if we are given two
points

Pj = (x;,y;) = (cos(s;), sin(s;)) (j=1,2)
on C corresponding to s; resp. sa, we let
P = P1 H PQ = (COS(51 + SQ),SiIl(Sl + 52))

be the point of C' corresponding to s; + s3. This makes the points of the circle C' into an abelian group with
neutral element O.



The addition formulas

cos(s1 + s3) = cos(sy1) cos(s2) — sin(s) sin(sz) (0.1.1.0)
sin(sy + $2) = cos(s1) sin(s2) + cos(sz) sin(s1) o
for the transcendental functions cos, sin becomes algebraic when written in terms of the coordinates of the
points on C:

(x1,y1) B (22, y2) = (z122 — Y1Y2, T1Y2 + T2y1) (0.1.1.1)

(and similarly for the inverse —(x,y) = (z,—y)). If we consider (0.1.0.0) as a definition of the (inverse of)
sin, then the formulas (0.1.1.0-1) can be written as

Y1 dt Y2 dt Y3 dt
— = ——— 0.1.1.2
i = 0112

Ys = y1\/1 =y + 2y /1 — o7 (0.1.1.3)

Let us repeat the key point once again: (0.1.1.2) is an addition formula for the transcendental function
arcsin(y) (defined as the integral of the algebraic function 1/v/1 — ¢2), given by an algebraic rule (0.1.1.3).

Is this just an accident, or a special case of some general principle? We shall come back to this question
several times during the course.

where

(0.1.2) Geometric description of the group law on C. There is a simple geometric way to construct
the point P = P; B Ps:

R

draw a line through O parallel to the line P; Ps; its second intersection with C' (apart from O) is P = PHDP;.
(0.1.3) Exercise. Why is the statement in 0.1.2 true? What happens if Py = Py?

0.2. A rigorous formulation

Attentive readers will have noticed that the discussion in Sect. 0.1 was not completely correct. The problem
lies in the square root 4/1 — y2, whis is not a single-valued function. How does one keep track of the correct
square root?

(0.2.0) The idea of a Riemann surface. The solution, proposed by Riemann, is very simple: one works,
in the complex domain, with both square roots simultaneously. This means that the set of the real points
of the circle C'

C(R) ={(z,y) e R*|2” +y* =1}

(previously denoted simply by C') should be considered as a subset of its complex points
C(C) ={(zx,y) € C*|2* +y* =1} :
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The set C(C) is a “Riemann surface”, realized as a (ramified) two-fold covering of C by the projection
map p2(z,y) = y. The function p;(x,y) = = (resp. the differential w = dy/xz = —dz/y) is a well-defined
(i.e. single-valued) holomorphic function (resp. holomorphic differential) on C(C), replacing the multivalued

function /1 — y2 (resp. differential dy/+/1 — y?) from 0.1.

Informally, a Riemann surface is an object on which one can define holomorphic (resp. meromorphic)
functions and differentials in one complex variable. Riemann surfaces are natural domains of definitions of
(holomorphic) functions that would otherwise be multivalued when considered as functions defined on open

subsets of C (such as y/1 — y? in the above example). We shall recall basic concepts of this theory in 1.3
below.

(0.2.1) The Abel-Jacobi map. In our new formulation, the integral (0.1.0.0) should be replaced by

P P
d

/w:/ & (0.2.1.0)

0] o

where P = (zp,yp) € C(C) is a fixed complex point on C. At this point another ambiguity appears: the
integral (0.2.1.0) depends not just on the point P, but also on the choice of a path (say, piece-wise infinitely
differentiable)

a:0 — P.
What happens if we choose another path a’ : O — P:

a

a

The composite path a * (—a’), which is obtained by going first from O to P along a and then from P to O
along —a’ (= o’ in the opposite direction), is then a closed path. As

dw =0

(which is true for every holomorphic differential on every Riemann surface), Stokes’ theorem

/ w:/dwzo
2A A

implies that the integral



[

along any closed path b (more generally, along any differentiable 1-cycle b) depends only on the homology
class of b in the homology group

[b] € H1(C(C),Z).

In our case,

is an infinite cyclic group generated by the homology class of the cycle v = C(R) (say, with the positive
orientation). This means that

fax (~)] = nb)
for some integer n € Z, hence the ambiguity of the integral (0.2.1.0)

/wf/w:n/w:Zﬂ'nEZWZ
a a’ ¥

is an integral multiple of the ‘period of w along +’, namely

1
dt
w=2 = 27.
/7 /_1m

To sum up, the integral (0.2.1.0) is well-defined only modulo the group of periods

{/w| ] € Hi(C(C), Z)} = 2Z.
b

The corresponding ‘Abel-Jacobi map’

P
C(C) — C/277Z, P / w (mod 27Z) (0.2.1.1)
o

is then a complex variant of arcsin.
(0.2.2) Exercise. Show that the map (0.2.1.1) defines a bijection C(C) — C/27Z (resp. C(R) —
R/27Z), the inverse of which is given by the map s — (cos(s),sin(s)).

(0.2.3) A useful substitution. Using the complex variable z = x + iy, one can identify the set of real
points C'(R) of the circle with the subset

{zeC*|2zz=1} CC*

of the multiplicative group of C. The discussion from 0.2.1 then applies to C* and the holomorphic differential
dz/z on C*, with period

dz

— = 2m
5 Z

(as H1(C*,Z) = Z[y]). The corresponding variant of (0.2.1.1) is the (bijective) logarithm map

P

d

log : C* — C/2niZ, PH/ % (mod 2miZ), (0.2.3.0)
1 z

which restricts to a bijection between C(R) and 27iR/27iZ and whose inverse is given by exp.

5



0.3. Geometry of the circle

In this section we consider only geometric properties of C' involving rational functions of the coordinates x
and y, not the transcendental parametrization by (cos(s),sin(s)).

(0.3.0) Projectivization of C. Writing the affine coordinates z,y in the form @ = X/Z,y =Y /Z, where
X,Y, Z are the homogeneous coordinates in the projective plane P?(C), we embed the affine circle C' into
its projectivization
C:X2+Y? =22
which is obtained from C' by adding two points at infinity
C(C)N{Z=0}={(1:+i:0)}.
(0.3.1) Circle = line. This is one of the small miracles that occur in the projective world. In fact, much

more is true (if you are not sure about the precise definitions, see 1.3.7 below):

(0.3.1.0) Exercise. If V C P2 is a smooth projective conic over a field F, O € V(F) an F-rational point
of V and L C P% an F-rational line not passing through O, then the central projection from O to L defines
an isomorphism of curves (over F')

p: V5L (5 PL)

)

P
L p(P)

(0.3.1.1) Example. F=Q,V=C:X2+Y2=22L:X =0:

As

a short calculation yields



2 -1 2t y 1+2
L ——— - 4= - . 0.3.1.1.0
TTerr YT err -z g ( )

These formulas define p on the affine parts of C resp. L; using homogeneous coordinates x = X/Z,y =Y/Z
and t = u/v, we see that the inverse of p is given by the formula

pli(uiv) = (X:Y:2Z) = (u?—0v?: 2uw:u? +0?).

Note that p induces a bijection between C'(C) —{O} and C — {+£i}, sends O to the point at infinity (¢ = 00)
of L and p((1: £i:0)) = Fi.

(0.3.1.2) Exercise. Can one generalize 0.3.1.0 to higher dimensions, e.g. to the case of smooth quadrics
V C P% (such as X¢ + X? + X3 = X3, if 2 is invertible in F)?

0.4. Pythagorean triples

It is time to turn our attention to number theory (at last!).

(0.4.0) A Pythagorean triple a,b, ¢ is a solution of the diophantine equation

a? +b* =2, (a,b,c € N);

it is primitive if ged(a,b,c) = 1. The first few primitive Pythagorean triples are

3+ 42 = 5

52 + 122 =132

@5 72 (0.4.0.0)
7% + 242 = 252,

Each Pythagorean triple defines a rational point (a/c,b/c) € C(Q) on the circle. Conversely, a rational point
(z,y) € C(Q) with zy # 0 defines a unique primitive Pythagorean triple a, b, ¢ satistying (|z|, |y|) = (a/c,b/c).

The set of (primitive) Pythagorean triples has a well-known explicit description, which can be deduced
by many different methods. We shall recall only three of them:

(0.4.1) Geometric method. One can explicitly describe the rational points on C as follows.

(0.4.1.0) The isomorphism p~! : P! =5 C from 0.3.1.1 is defined over Q, hence induces a bijection between
the sets of rational points

p i PHQ) = QU {c} = C(Q) = C(Q),

given by the formula

292 2 t2—-1 2
T T ( ) _ ( ) (0.4.1.0.0)

u? +v2 u2 + v2 24+17¢24+1
(and p~'(c0) = O = (1,0)).

(0.4.1.1) Exercise. Show that (0.4.1.0.0) yields the following parametrization (up to a permutation of a
and b) of all Pythagorean triples:

a=w?—v)w, b=2ww, c=w>+0")w, u,v,weN, u>v, ged(u,v)=1.
Where does the permutation of a and b enter the picture?
(0.4.2) Algebraic method. The following statement is a special case of “Hilbert’s Theorem 90”.
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(0.4.2.0) Exercise. If L/K is a finite Galois extension of fields with Gal(L/K) cyclic, then the sequence

Np/k

L* l1-0o L* K*,

where o is a generator of Gal(L/K), is exact. In other words, for A\ € L*,

A-o(N) 02\ 0" A =1 = (Guel*) A= ﬁ

(0.4.2.1) Special case: K=Q,L=Q(i), \=z+1iy (z,y € Q), 0(\) =z —iy. Then

NN =22 112 =1 < @uveQ) A=
u—
which is equivalent to
(u +iv)? u? —v? 2w

W= (u — ) (u + v) T U + 02 +Zu2—|—v2’

which is nothing but the formula (0.4.1.0.0)! This observation leads to an elegant description
a+ib= (u+iv)? (0.4.2.1.0)
of all primitive Pythagorean triples (up to a permutation of a and b):

2

(2+0)2=3+4i

3+20)2=5+12

( .)2 _ (0.4.2.1.1)
(4+30)2=7+24i

(4 +1i)% =15+ 8i.

(0.4.3) Arithmetic method. This is based on the factorization
(a+ib)(a —ib) = a® + b = 2.
(0.4.3.0) Arithmetic of Gaussian integers. The ring
Z[i) ={z+iy|z,y € Z}
is a unique factorization domain with units

Z[i]* = {+1, +i}.

A prime number p factors into a product of irreducible factors in Z[i] as follows:

(i) 2= (—i)(1+41)?, with 1 + i irreducible.
(ii) If p =3 (mod4), then p is irreducible.
(iii) If p=1 (mod4), then p = 77, where m = u + iv, u? + v? = p; both 7 and 7 are irreducible.

(0.4.3.1) Exercise. If a,b,c is a primitive Pythagorean triple, then c is odd and ged(a + ib,a —ib) = 1 in
Z[i]. Deduce that either a+ib = d? or b+ia = d? is a square of some d € Zl[i]; writing d = u + v, we obtain
again (0.4.2.1.0).

(0.4.4) Do the methods from 0.4.1-3 generalize? Try to apply them to the following questions.
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(0.4.4.0) Exercise. Suppose that we replace the square in (0.4.2.1.0) by a higher power. What is the
arithmetical meaning of the numbers we obtain, such as

(2+0) =2+ 113, (3+2i)3=—-9+46i?

Are they again solutions of some diophantine equations? If yes, are there any other solutions?

(0.4.4.1) Exercise. Let d € Z, v/d ¢ Z. Find all solutions of

22 —dy? =1 (z,y € Q).

(0.4.4.2) Exercise. Can one use 0.3.1.2 to describe explicitly all rational points on the n-dimensional unit
sphere, i.e. all solutions of

x%+x§+...+xi:1 (Zoy...,2n € Q)?

0.5. The group law on the circle revisited

(0.5.0) Multiplication formulas for the group law. For an integer n > 1, put

n factors

and

[=n](z,y) = [nl(z, —y)

(= multiplication by n (resp. —n) in the sense of the group law on C'). The expression [n](x,y) is given by
a pair of polynomials of degree n with integral coefficients, the first few of which are

[1(z,y) = (=, )

2)(z, y) = (22 — 1, 2zy)

8](z,y) = (42° — 3z, 3y — 4y°)

[4)(x,y) = (8z* — 822 + 1,823y — 4xy)
[5](z,y) = (162° — 202° + 5, 16y° — 20y> + 5y).

Note that

[_3] (ZE, y) = (1,3’ y3) (mOd 3)7 [5}(1‘17 y) = (':C57 y5) (mOd 5)
The following exercise shows that this is no accident.

(0.5.1) Exercise (Congruences for the multiplication). Let p > 2 be a prime; put p* = (—1)®=1/2p,
Then

p¥](2.) = (a7, 47) (mod p).
[Hint: use the substitution z = x + iy.]

(0.5.2) Exercise. (i) For every (commutative) ring A, the formula (0.1.1.1) defines a structure of an
abelian group on

C(A) = {(a,y) € A?|2® +y* = 1}.
(ii) If2 is invertible in A and there exists A € A satisfying A?> + 1 = 0, then the formula

(,y)—z=2+Xy
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defines an isomorphism of abelian groups
C(A) = A*

(here A* denotes the multiplicative group of invertible elements of A).
(iii) Assume that F is a field of characteristic char(F) # 2 over which the polynomial A\* + 1 is irreducible.
For a fixed root v/—1 of \> + 1 = 0 (contained in some extension of F'), the map

(T,y) —2z=z+V-1y

defines an isomorphism of abelian groups
C(F) = Ker (NF(H)/F F(VZI) — F) :

the latter group is isomorphic to F(\/—1)*/F* [Hint: see (0.4.2.0).]

(0.5.3) Exercise (Structure of C(F) for finite fields). Let p > 2 be a prime and F,, an algebraic closure
of F.

(i) Describe the structure of C(F,) as an abstract abelian group.

(ii) For each n > 1, describe the structure of C(Fp»), using 0.5.2.

(iii) Describe the structure of C(Fyn), using (i) and 0.5.1. [Hint: i = {a € F,|a”"~' = 1}.]

(iv) Show that

o 1-T o
exp Z Mzm _ ) e ifp=1 (mod4)
= o if p =3 (mod4).

(0.5.4) Exercise (Structure of C(Q)). (i) The torsion subgroup of C(Q) is equal to
C(Q)tors = {(£1,0), (0, £1)}.

(ii) The quotient group C(Q)/C(Q)+ors Is a free abelian group with countably many generators. Can one
explicitly describe a set of its (free) generators? [Hint: combine 0.4.2 with 0.4.5.0.]

0.6. Galois theory

(0.6.0) Division of the circle (Gauss). For every integer n > 1, the points dividing the circumference
of the (real) circle C(R) into n equal parts

T~
C
~
form the n-torsion subgroup of C'
CR)n ={(z,y) € C(R)[[n](z,y) = O} (= C(C)n). (0.6.0.0)

Under the transcendental parametrization
(cos,sin) : R/27Z — C(R),
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the subgroup C(R),, corresponds to %27TZ/27TZ; the formula (0.6.0.0) implies that the coordinates of points
in C(R),, are algebraic numbers of degree < n.
It is more convenient to use the isomorphism 0.2.3 (+ 0.5.2)

C(C) =5 C", (a,y) 2= +iy,

under which C(R),, = C(C),, corresponds to the group of n-th roots of unity pu, = p,(C); here we use the
notation

Ha(A) = {z € Ala" = 1)

for any (commutative) ring A.

The field Q(u,) generated over Q by the elements of p, is, in fact, generated by any primitive n-
th root of unity (i.e. a generator of the cyclic group p,). These primitive roots of unity form a subset
ul = {¢%a € (Z/nZ)*} C pn (for fixed ¢ € p¥) of cardinality (n); they are the roots of the n-th
cyclotomic polynomial

@, (x) = [] (X -0

CEns,

The first few polynomials ®,,(X) are equal to

P X)=X -1, P(X)=X+1, O3(X)=X>+X+1, OX)=X2+1,
Ds(X) =X+ X3+ X2+ X +1, P(X)=X2-X+1, Dpp(X)=X*—X>+1.

(0.6.1) Exercise (Properties of ®,,). (i) The polynomial ®,,(X) is equal to

,(X) = [J(x™/¢ — 1)@,
d|n

where (d) is the Mébius function
0, if d is not square-free
(-1)!, if d is a product of | > 0 distinct primes.
(ii) The polynomial ®,(X) has coefficients in Z.
(iii) If n = p* is a prime power, then ®,(X) is irreducible over Q. [Hint: Consider ®,.(X +1).]
*(iv) If n = p* is a prime power and p { m, then ®,,(X) is irreducible over Q(ji,,). [Hint: Combine the

method from (iii) with elementary algebraic number theory.]
(v) Foreachn > 1, ®,(X) is irreducible over Q.

(0.6.2) The Galois representation on p,. It follows from 0.6.1(ii) and (iv) that Q(u,) is the splitting
field of ®,,(X) (hence Galois) over Q, of degree

[Q(kn) : Q] = deg(®n) = |pp| = [(Z/nZ)*| = p(n).

The action of any field automorphism o € Gal(Q(u,)/Q) of Q(u,) (over Q) preserves u, and commutes
with its group law (= multiplication). It follows that its action on pu,, is given by

o:(— (" (VC € pn)

for some element
0 = \u(0) € (Z/nZ)* = GL.(Z/nZ).
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The corresponding map

Xn : Gal(Q(un)/Q) — GL1(Z/nZ)

(the “cyclotomic character”) is a homomorphism of groups; it is perhaps the simplest example of a Galois
representation.

The Galois theory of the extension Q(u,)/Q can be summed up by the statement that x,, is an isomor-
phism (it is injective almost by definition, and its domain and target have the same number of elements).

(0.6.3) Kummer theory. Suppose that F'is a field containing pu, (i.e. the set pu,(F) = {x € F|2" =1}
has n elements) and a € F*. Fix a separable closure F*? of F and an element b = {/a € F*? satisfying
b™ = 1. Then the formula

o o(¥/a)/ Va

defines a homomorphism of groups
do : Gal(F*P/F) — un(F),
which does not depend on the choice of b and whose kernel is equal to Gal(F**?/F({/a)). The map
ar 0q
defines an homomorphism of abelian groups
0 : F* — Hom(Gal(F*P/F), un(F))
with kernel
Ker(6) = F*".

The special case of Hilbert’s Theorem 90 stated in 0.4.2.0 implies that the map ¢ is surjective, hence induces
an isomorphism of abelian groups

§: F*/F*™ — Hom(Gal(F*?/F), i, (F)). (0.6.1.0)

In fact, it is possible to give a unified interpretation of both the logarithm map (0.2.3.0) and the isomorphism
(0.6.1.0).
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I. Elliptic Integrals and Elliptic Functions

This chapter covers selected topics from classical theory of (hyper)elliptic integrals and elliptic functions.
It is impossible to give an exhaustive list of references for this enormous subject. For general theory (and
practice), the following books can be useful: [McK-Mo], [La], [Web].

1. Elliptic Integrals

By definition, an elliptic (resp. hyperelliptic) integral is an expression of the form

1= [ R/ do.

where R(z,y) € C(z,y) is a rational function and f(x) € C[z] a square-free polynomial of degree n = 3,4
(resp. n > 4).

If n = 1,2, the integral is an elementary function; for example, if f(z) = 1 — 22, then the substitution
x = (t*—1)/(t* + 1) from 0.3.1.2 transforms I into an integral of a rational function of ¢.

Where do (hyper)elliptic integrals occur in nature? We begin by two geometric examples.

1.1 Arclength of an ellipse

(1.1.1) An ellipse

(§)2+(%)2:1 (@>b>0)
y
b
a X

can be parametrized by © = acosf,y = bsinf. Its arclength s satisfies
(ds)? = (dz)? + (dy)? = (a®sin® @ + b? cos® 0)(df)? = a*(1 — k? cos® §)(dh)?,
where k? = 1 — b?/a?. Normalizing the long axis of the ellipse by taking a = 1, we have b = v/1 — k2 and

1 — k222

de = —sinfdf, (dr)*>=(1-2?)(d)? (ds)?= 2
—x

(d)?,

hence

1— k222 1 — k222
s = -5 dg;' = dSU
1—x V= 22)(1 - k222

1.2 Arclength of a lemniscate

(1.2.1) Lemniscate. Recall that, given two distinct points F}, F» in the plane, the lemniscate with the
foci Fi, F is the set of points P in the plane satisfying
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|F\P| - |E,P| = |F0) - [F:0), (1.2.1.1)
where O is the midpoint of the segment Fj F5.

Choosing a coordinate system in which O = (0,0), F; = (—a,0), F> = (a,0), the (square of the) equation
(1.2.1.1) for the point P = (x,y) can be written as

a'=((z+a)?+1)((z—a)?+y?) = (@° +y° +d°)* — (2a2)?,

which is equivalent to
(22 +y*)? = 2a% (2% — o).
For a = 1/v/2 we obtain a particularly nice equation
(2172 + y2)2 _ $2 _ y2’
which becomes

r? = cos 20 (12.1.2)

in the polar coordinates x = rcosf, y = rsin6.
(1.2.2) Arclength. The equation (1.2.1.2) implies that rdr = — sin(260)d#, hence

r2(dr)? = (2sin? 0)(2 cos® 0)(dh)? = (1 — ) (1 4+ 72)(dB)* = (1 — r*)(dh)>.

It follows that the arclength s of the lemniscate satisfies

(@) = )+ 20 = ar)? (14 2 ) = 190

hence

dr
S:/\/T—r‘l' (1.2.2.1)

1.3 The lemniscate sine

(1.3.1) The sine function is defined as the inverse of the integral (0.1.0.0) that computes the arclength of
the unit circle. In a similar vein, the ‘sine of the lemniscate’ sl is defined as the inverse function to the
integral (1.2.2.1). In other words, if

Toodt

then we put
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which corresponds to the following picture:

As in 0.2, the integral (1.3.1.1) can be interpreted as an integral on the Riemann surface

V(C) ={(z,y)|y* =1—2a"}
associated to the curve
Viyt=1-a" (1.3.1.2)

As a result, the function sl(s) will make sense also for complex values of s.
The substitution ¢ := —t (resp. t = it) implies that

sl(—s) = —sl(s), sl(is) =1isl(s). (1.3.1.3)
Denoting by

Q_/l dt
2 0o V1—t4
the length of the ‘quarter-arc’ of the lemniscate between (0,0) and (1,0), then

sl(

%) =1, sl()=0, sl(Q+s)=sl(—s)=—sl(s). (1.3.1.4)

(1.3.2) The previous discussion should be compared to the corresponding picture for the circle, given by

the equation

r =sinf

in polar coordinates (this is a slightly different parametrization than in 0.1):

0,1)

(0.0)

In this case
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(ds)? = (dr)? + r2(d6)? = (cos 0 + sin? ) (d)? = (d6)? = _l(‘ﬁ“)rw

hence

(1.8.3) The main difference between the functions sin and sl is the following: the sine function is periodic

sin(s + 27) = sin(s)
with periods 27Z, while the formulas (1.3.1.3-4) imply that

sl(s +29Q) = sl(s)
sl(s+2iQ) = isl(s/i+2Q) =i sl(s/i) = sl(s),

hence sl is doubly periodic, with periods (at least) in the square lattice 2QZ + 2iQZ.
1.4 Fagnano’s doubling formula for sl

(1.4.1) Recall that integrals of the form [ R(x, /1 — z2)dz can be computed by the substitution
2t , (112’

The lemniscatic integral (1.3.1.1) involves v/1 — r? instead of v/1 — 22, so it would be fairly natural to try
to apply the substitution (1.4.1.1) with

i.e. change the variables by

2 _ 2u? . V2u 14 1—ut\?
1+ut’ V14 ut’ '

r

It follows that

hence

dr _ 3 du
o Vi VTra

This is almost the same integral as before, except for the factor v/2 and a change of sign inside the square
root. In order to get back the minus sign, we make another substitution

(1.4.1.1)

_ e27rz/8,U _ +Z’U

V2

u (= ut = —vt),
which yields
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Lo At <1+”4)2 (1.4.1.2)

V1=t 11—t
and
dr . dv

(1.4.2) Doubling formula for the sine. An elementary variant of (1.4.1.2-3) is provided by the doubling
formula for the sine function: if u = sin(s), then

sin(2s) = 2uy/1 — u?. (1.4.2.1)
The substitution
y =2uv1—u?
therefore yields
y? = 4u?(1 — u?), 1—y?=(1-2u%?, 2ydy = Su(1 — 2u?) du,
hence

dy _s du
Vi—y?2  V1—u?

Integrating the formula (1.4.2.2), we obtain the identity

(1.4.2.2)

we started with.

(1.4.3) Complex multiplication by 1+ 4. In the similar vein, the formula (1.4.1.3) can be integrated
into

[ @ 1 4ie=(1+9)

Vgt
VI—th /0 N

where

. /” dt
o VI—tt
the first identity in (1.4.1.2) then can be rewritten as
(1+1d)sl(z)

sl((1+i)z) = N (1.4.3.1)

This formula, which should be compared with (1.4.2.1), is the simplest non-trivial example of what is usually
referred to as “complex multiplication”.

(1.4.4) The doubling formula. In order to obtain a formula for multiplication by 2 = (1 +4)(1 — i), we
iterate the substitution (1.4.1.2), with i replaced by —i:

, o (L= 1_v4_<1+w4>2 dv — 1) dw
V1—wt’ I—wi) ' Tt V1—wt

which yields
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(1491 —dw 2wyl —w! dr _y dw
SV oicet . 1iwt  Viesd S icet

This can be rewritten as

25l(z)+/1 — sl*(x)

sl(2w) = 1+ sl4(x) ’

(1.4.4.1)

which is Fagnano’s doubling formula.

(1.4.5) Addition formula. Is there an addition formula for sl(x1 +x2) in terms of sl(x1) and sl(x5) which
would specialize to (1.4.4.1) if z1 = x5 = 27 A natural guess, namely that

)/1— si( I(a2)\/1— si*
sl(ar +a5) £ 2 Ha) sti(wz) + sl(zs) sth@) (1.4.5.1)

1+ sl2(zy1)sl?(x2) ’

which is equivalent to the addition formula

w1 t w2 dt ws d
— + —_ = ——— (mod 2QZ + 2i07Z
/0 V1—tt 0o V1-—tt 0 \/1—t4( )
with

VAR Rl AT (1.4.5.2)

1 + wiw3

w3 =

turns out to be correct.

(1.4.6) Euler’s addition formula. In fact, Euler discovered and proved a common generalization of both
(1.4.5.2) and the addition formula for sin(s). Euler’s result is the following: if

f(t) =1+ mt? + ntt,

then

/O“ \/% " /0 \/th(—t) B /0 (1.4.6.1)

(modulo periods), where

_ /I + 0/ F(w)
w = . (1.4.6.2)
1 — nu2v?
For (m,n) = (—1,0) (resp. = (0,—1)) this reduces to the addition formula for sin (resp. for si).

Euler’s proof of (1.4.6.1-2) was based on a clever calculation, and therefore was not interesting at all (it
can be found, e.g., in [Mar]). What was missing was a general principle behind various addition formulas,
not a verification — however ingenious — of a particular formula. Such a principle was discovered by Abel;
his approach will be discussed in the next section (where we also deduce Euler’s formula from Abel’s general
results).

2. Abel’s Method
2.1 Addition formulas for cos,sin revisited

(2.1.1) We are going to analyze in great detail the geometric interpretation of the addition formulas for
cos, sin from 0.1.1-2:
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if L, L are lines intersecting the circle C(R) in pairs of points

LQC(R) :{Pl,PQ}, ZQC(R) Z{Fl,ﬁg},

then (using the usual notation w = dy/x = —dx/y, O = (1,0))

. Py Py Py P
L is parallel to L = / w —|—/ w= / w —l—/ w (mod2rnZ). (2.1.1.1)
o o o o

Assuming that neither L nor L is vertical, we can write their equations in the form

L:y=azx+b, L:y=ax+b; (2.1.1.2)

then

L is parallel to L <= a = a. (2.1.1.3)

(2.1.2) Exercise. Show that, conversely, (2.1.1.1) implies the addition formula (0.1.1.1). [Hint: Choose L
such that O € L.]

(2.1.3) We shall try to prove (2.1.1.1) algebraically, by computing the partial derivatives of its left hand
side with respect to the parameters a,b. It will be natural to consider the parameters a, b as having complex
values.

Denoting the line L from (2.1.1.2) by Lgp, the coordinates (z,y) of the points in the intersection
L,(C)NC(C) are the solutions of the equations

y=ax+b, 4y =1;

thus y is uniquely determined by z, which is in turn a root of the polynomial

F(x) = 2%+ (ax + b)* =1 = (a® + 1)2? + 2abz + (b* — 1) = 0.

This is a quadratic equation of discriminant

disc(F) = 4(a®b* — (0* — 1)(a® + 1)) = 4(a® + 1 — b?),

unless a = +i. What makes these two values of a so special?

(2.1.4) About a = +i. The answer is simple if we pass to homogeneous coordinates: by Bézout’s Theorem,
every projective line in P2(C) intersects the projectivization C(C) of the affine circle C(C) in two points (if
we count them with multiplicities). Recalling that C (C) has precisely two points at infinity Py = (1 : £i : 0),
we see that the projectivization

Lop:Y =aX +bZ
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of the affine line L, ; contains Py if and only if @ = £¢. This implies that

(C(C) N Las(C) = C(C) N Lay(C)] = a # i,

Perhaps we could remedy the situation by working with C and anb from the very beginning? Unfortunately,
the differential w has a pole at each of the points P = Py, which means that the integral

P
IR
O

cannot be defined at them. As a result, we have to exclude the values a = +i and work with a smaller
parameter space

B = {(a,b)|a,be C, a# £i}.

Denote by

Y ={(a,b) € Bla®> +1—0b*=0}

the “discriminant curve” of the polynomial F.
(2.1.5) Intersecting C with L,;. If (a,b) € B, then the discussion in 2.1.3 implies the following
description of C(C) N Ly 5(C):

(2.1.5.1) If (a,b) ¢ X, then the line L, ;,(C) intersects C(C) transversally at two points P; = (z;,y;) (j = 1,2),
where y; = ax; + b,

2ab b2 —1

F(x) = (@ + 1)(z — x1)(x — z2), ml—i—mg:—GQ—H, TN = g

(2.1.5.2) If (a,b) € X, then the line L, ;(C) is tangent to C(C) at a point P; = (z1,y1) (and has no other
intersection with C'(C)), where

F(z) = (a®> 4+ 1)(z — 21)?, x1 = —a/b, y1 =ax1 +b=1/b.
In order to emphasize the dependence of the points P; on the parameters, we sometimes write P;(a, b)

for P;. In the case (2.1.5.2), we formally denote P, = P.
(2.1.6) The key calculation. For (a,b) € B, put

Pl(a,b) Pg(a,b)
I(a,b) z/ w +/ w (mod 27Z) € C/27Z.
o o

In 2.1.7 we prove the following simple formula for the infinitesimal variation of I(a, b), assuming that (a,b) &
>

dyj/l'j, lf.’EJ #0
dI(a,b) = I, da + I} db = w1 + wa, wj = . (2.1.6.1)
—dzx;/y;, if y; #0,

where I/, = 81 /0a denotes the partial derivative with respect to a (and similarly for b).
Perhaps the best way to understand this formula is to compute its right hand side: by differentiating
the equations

2?4yt =1, y=axr+b

satisfied by the pairs (z;,y;) (j = 1,2) with respect to all variables, we obtain

2xdx 4+ 2ydy = 0, dyzadx—kmda—kdbz—%dy—kxda—kdb,
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hence

d
(z + ay)?y =z da + db.
As
x4 ay = (a® + 1)z + ab,
we obtain
dyj Zj 1
=== = ————db. 2.1.6.2
+ (a2 + 1)z; + ab ( )

o S/ N |
i x; (a2 + 1)z; + ab “
Combined with (2.1.6.1), this yields the following formulas for the partial derivatives of I on B — X:

, T To 22179(a® + 1) + ab(zy + x2)

Lo = (a2 4+ 1)x1 +adb + (a2 + Dxg +ab (a2 +1)2z129 + (a2 + 1)ab(xy + x2) + a2b?
200 —1) —2a%?/(a®+1) 200°—a®—1)/(a®+1) 2
T (a2 4+1)(b2 — 1) — 22262 + a2 b2 —a?—1 a2+ 1
= 1 N 1 _ (a® +1)(z1 +x2)+2ab:0
7 (@ +1)ay +ab (a2 + 1)z +ab b2 —a? -1 '

As observed in 2.1.1-2, the vanishing of I} = 0 implies the addition formula (0.1.1.1). Our calculation is a
priori valid for (a,b) € B — X, and therefore establishes (0.1.1.1) only for (x1,y1) # (22, y2). However, both

sides of

T1,Y1 T2,Y2 T1T2—Y1Y2,Z1Y2+T2Y1

/ w —|—/ w= / w (mod 27Z)
o 1e) o

are holomorphic functions of P, = (z1,y1) and Py = (2, y2), hence the formula is still valid if we let P; tend
to PQ.

(2.1.7) In this section we give the promised proof of (2.1.6.1), which is just a variant of the fact that the
derivative of the integral of a fuction is the function itself. For fixed (a,b) € B — X, let Py = (x1,y1) #
Py = (z2,y2) be the intersection points of L, ;(C) with C(C). For all values of (@,b) in a sufficiently small
neighbourhood U of (a,b) in B — X, the intersection points Py = (T1,7,) # P2 = (T2,7,) of L;3(C) with
C(C) are holomorphic functions of (@,b) (by Theorem on Implicit Functions; see 3.4.2 below) and each P;
lies in a contractible neighbourhood U; of P;. If x; # 0 (resp. y; # 0), we can also assume that Z; # 0
(resp. 7; # 0), by shrinking U if necessary. We wish to compute the partial derivatives of

_ P,y P
I(a,b) :/ w+/ w
o o
at (a,b). If z; # 0 (resp. y; # 0), then

P; P; P; Ui dy Ti  dr
/ w—/ w:/ w:/ — resp. :/ -— .
o o P; y; L z; Y

J

This equality is to be understood as follows: we fix a path p; from O to P; and a path ¢; from P; to ?j

contained in U;. As Uj is contractible,
/ w- / w= / wec
Pj*q; pPj q;

does not depend on the choices of the paths.
Observing that
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([ #)en=2 ()

(and similarly for partial derivatives with respect to b), we obtain

Vi dy 1 (9y; 9y, z dy;
d — b) = — | =ZL(a,b)da + —Z(a,b)db | = | =2 b 2.1.7.1
([ #) -2 (G- Brans) - (B)on.
at least in the case x; # 0; if z; = 0, then
Y, I
d (/ @> (a,b) = (_@> (a,b). (2.1.7.2)
y T Yj

Taking the sum of (2.1.7.1) (resp. (2.1.7.2) if x; = 0) over j = 1,2 yields the formula (2.1.6.1), save for the
notation: the variables from 2.1.6 did not have bars above them.

(2.1.8) What is a correct interpretation of the sum w; + ws in (2.1.6.1)7 Put

S ={(z.y,a,b)| (a,b) € B, 2® +y* =1,y = ax + b};

then the projection

p:S—>B7 p(xvyaa7b):(a7b)

is a covering of degree 2, unramified above B — ¥ (and ramified above ¥). Viewing w = dy/x = —dz/y as a
holomorphic differential on S, then

w1 + W = Pyw

is the “trace” of w with respect to the map p. The definition of p, above B — X is not difficult (see 77 below),
but its extension to the ramified region above ¥ requires some work. In our calculation of dI(a,b) in 2.1.6,
the term b — a® — 1 disappeared from the denominators; this indicates that p.w should indeed make sense
everywhere in B.

2.2 Example: Hyperelliptic integrals
Let us try to generalize the calculation from 2.1.6.

(2.2.1) The first thing that we need to understand is the vanishing of the sum

1 1
=0
(a®>+ 1D)xy + ab + (a® + 1D)xo + ab

(2.2.1.1)
over the roots x1,zs of the polynomial
F(z) = (a* + 1)2? + 2abz + (b? — 1).
Noting that
2 1 /
(a*+ Dz +ab= §F (z),
we see that (2.2.1.1) is a special case of the following
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(2.2.2) Exercise. Let F(z) € C[z] be a polynomial of degree deg(F) = n > 2 with n distinct roots
X1,...,2Tn, and p(z) € Clx] a polynomial of degree deg(yp) < n — 2. Then

n
=

e(x;) _
< F'(z;) v

(2.2.3) Exercise. According to the calculation in 2.1.6,
F'(x1)F'(x3) = 4((a® + 1)y + ab)((a® 4+ 1)y + ab) = 4(b* — a® — 1) = disc(F).
Does this identity generalize to polynomials of arbitrary degree?

(2.2.4) Hyperelliptic integrals. We are now ready to generalize the calculation from 2.1.6 (cf. [Web],
Sect. 13). Instead of the circle C' we consider the curve

Viy® = fla),
where f(x) € Clz] is a polynomial of even degree deg(f) = 2m > 2 with 2m distinct roots. We shall be
interested in addition formulas for integrals of the form
/P ¥ dx B P oak da
o Vf(x) o ¥

on V(C), where O € V(C) is fixed (for k > 0).
As y? = f(z) on V, intersecting V with a general family of curves

Ro(z,a) + Ri(z,a)y + -+ + Ry (z,a)y™ =0 (R € Clz,al)
(where a = (a1, ..., a,)) amounts to intersecting V' with a simpler family
D, : P(m,a) - Q(m,a)y =0,
where

P=Ro+ fRy+ f°Ra+ -+, —Q=Ri+ fRs+ f*Rs +---

are polynomials P,Q € C[z,a] = Clz,a1,...,a,]. The x-coordinates of the points in the intersection
V(C) N D,(C) are the roots of the polynomial

F(z,a) = P*(z,a) — f(2)Q*(x,a),
which generalizes the polynomial F'(x) from 2.1.6. We have
P(m,a):p(a);];dp_l,-.-.’ Q(x,a)zq(a)de+~-~, f(q;):'rm2m_|_...7

where
dp = deg,(P), dg := deg,(Q), p,q € Cla] — {0}, re C*.

We make the following assumptions:

(2.2.4.1) The degree of F' in the variable z is equal to
deg, (F) = 2N := max(deg, (P?),deg, (fQ?%)) = 2 max(dp,dg + m).

This is always true if dp # dg + m; if dp = dg + m, then this condition amounts to the requirement
that
p(a)* —rq(a)* € Cla] - {0}.
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(2.2.4.2) The discriminant disc, (F) of F with respect to the variable z (a generalization of 4(b*> — a® — 1) from
2.1) is not identically equal to zero as a polynomial in a.

(2.2.4.3) The resultant Res, (P, Q) of P and @ with respect to the variable = is not identically equal to zero as
a polynomial in a.

Put

H(a) = (p(a)?* — rq(a)?)disc, (F)Res, (P, Q), B =1{acC"|H(a) #0}.

The assumptions (2.2.4.1-3) imply that, for each a € B, the polynomial F(z,a) has 2N distinct roots
Z1,...,29n depending on a (as holomorphic functions of a), none of which is a root of the polynomial
Q(z,a). This means that

(VQGB) V(C)QDG(C):{PM"WP?N}? Pj:Pj(a):(gjj7yj):(xJ7 (‘ij )/Q(x]a ))
(2.2.5) For a € B we can imitate the calculation from 2.1.6 to compute the infinitesimal variation

dl = I/ da := I, day +---+ I, da,

of the sum

Z/ o dr (k> 0),

which should be understood as in 2.1.7: we consider only the values of I(a) for @ € B lying in a sufficiently
small neighbourhood of a, and we let the paths O —~ P;(@) vary only in small neighbourhoods of the
endpoints. The differential dI is then well defined and independent of the choices of the paths. A global
definition of the integrals I(a) requires a non-trivial analysis of their periods; see 77 below.

We begin by differentiating the equations

v =f(z), yQ-P=0,

obtaining
ydy = frdz,  (yQ, — Pp)dx+ Qdy + (yQ,, — P,)da =0,
hence
!
(yQ; - P+ Qs > dz + (yQ!, — P.)da = 0. (2.2.5.1)
Differentiating F' = P? — fQ? and using y@Q = P, we see that
/ 2 ' _9pPP! 2 £/ ) a4
2y 2yQ 2yQ

Substituting to (2.2.5.1) we obtain

dr _20WQ,—Pl) , _ 2APQL—QP)

y F] F] ’

hence

2N k 2N / /
£ da,
1 ( (z5,95) j=1

j= Y T=x;

which implies (as in 2.1.7) that

24



Kl 221\5/%(“) zF dx _ 221\5 20%(PQ,, — QP,) . (2.2.5.2)
day — Jo Y =1 B =

Combining (2.2.5.2) with Exercise 2.2.2, we obtain the following addition theorem (a special case of Abel’s
Theorem).

(2.2.6) Proposition. If the assumptions (2.2.4.1-3) are satisfied, k > 0 and
(VI=1,....,r)  k+deg,(PQ, —QP,)<2N -2, (2.2.6.1)
then the sum I(a), defined locally on B after appropriate choices of the paths, is locally constant.
(2.2.7) Let us analyze the condition (2.2.6.1) in more detail. Firstly,
PQ., — QP = W(a)z®Te ...
where

) ) P q
Wi(a) = pq,, — qpa, =

Py
is the Wronskian of p,q € Clay, ..., a,] with respect to the variable a;. This implies that
dp—i—dQ7 ile(a);éO

(Va€ B)  deg,(PQ,, —QPF;,) =
<dp+dg —1, ile((l):O.

Secondly,

m— 2, ifdp=dg+m
2N—2—(dp—|—dQ)=2maX(dp,dQ+m)—(dp+dQ)—2=
>m—1, lfdp#dQ‘Fm

It follows that (2.2.6.1) is satisfied in each of the following cases:

(2.2.7.1) dp # dg +m, 0<k<m-1.

(2.2.7.2) dp = dg +m, 0<k<m-2.

(2.2.7.3) dp =dg +m, 0<k<m-—-1, (MaeB)(Vi=1,...r) Wi(a) = 0.
The last condition is equivalent to

(Va,b € B) the vectors (p(a),q(a)), (p(b),q(b)) are linearly dependent

(which is a generalization of (2.1.1.3)).

In particular, if we fix the degrees dp,dg > 0 and consider the intersections of V' with the universal family

Cop:(ap+arz+ -+ adpxd”) =y(bg+brz+---+ bdedQ) (2.2.7.4)

(where ag, .. .,bq, are independent variables), we obtain common addition formulas for all integrals

/kadx
) y

0<k<m-—1, dp #dg +m
0<k<m-—2, dp = dQ +m (2275)
k=m-—1, dp =dg +m, bag = caap (c € C* constant).

Q

provided
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(2.2.8) Change of variables in hyperelliptic integrals. Suppose that f(z) € C|x] is a polynomial of

degree n > 1 with n distinct roots aj, ..., a,. For every invertible complex matrix
a b
g = S GLQ(C)7
c d
the change of variables
@) aT + b
z=g9() =
g cr +d

transforms f(x) into

(E5) =@ ai@

and dx into

(af+ b) (ad — be) dx
d{—
T +d

T (@t d?

where f(Z) € C[Z] is a polynomial of degree n (or n— 1) with the set of roots {g~*(a1),...,97 (an)} — {00}
If n = 2m is even, it follows that the hyperelliptic integral

[ Bt Vi) ds (R(a.y) € Cla.v)

is transformed into

t/ﬂﬁdﬂ@ﬂf (R(z.7) € C.7).

If m > 2, then we can choose ¢ such that g+

form

maps three of the roots a; into 0, 00,1, which yields f of the

2m—3
f@=az@-1) [[ @-8).
j=1
In particular, for n = 4, we obtain the Legendre normalization:

f@ =z -1)(T - N).
Other normalizations of elliptic integrals were considered by Jacobi:
fl@) = (1 —a*)(1 - k*2?)

(cf. 1.1) and Weierstrass:

f(x) = 42° — g2z — g3
(cf. 7.1.8 below).

2.3 Euler’s addition formula

(2.3.1) Let us prove Euler’s formula (1.4.6.1-2) by Abel’s method. The formula involves the differential
w = dz/y on the Riemann surface V(C), where V is the curve

Viy?=f(z) =1+ ma? +na’
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(assuming that f has four distinct roots). We shall consider intersections of V' with auxiliary curves

Dop:y= 1+ az + bx?.
The intersection V(C) N Dy (C) consists of the point O = (0,1) and three other points — possibly with
multiplicities — (x;,y;) (j = 1,2, 3), where
Yj =1—|—ascj+bx?
and x1, 2, x3 are the roots of the polynomial

(1+ ax + bx?)? — (1 + ma® + na?)

= (b —n)z® + 2abx® + (a® + 2b — m)z + 2a =
x

= (b2 —n)(z —x1)(x — z2)(x — x3).

It follows that

2ab
T1+ X2 + 23 = R n bxizow3,
hence
e FLF T2
3 1-— bﬁCl.’L‘Q.

Dividing the formulas

T1y2 — Toyr = (21 — x2) + b(w125 — 2220) = (27 — 22)(1 — bxy23)
aty; — w5yt = (27 — 23)(1 — natad)
by each other, we obtain

(x1 + 22)(1 — na2a3)

T1Y2 + Toy1 =

1—bzixo ’
hence
T1Y2 + Tay1
—r3 = ———————. 2.3.1.1
BT nrr3 ( )

The special case of Abel’s Theorem proved in 2.2.7 (for m =2, k =0, dp = 4, dg = 0) implies that the sum

(z1,91) (z2,y2) (%3,y3)
/ w+/ w+/ W (2.3.1.2)
O O O

(modulo periods) is equal to a constant independent of (a, b), at least if x1, 29, x3 are distinct. Taking a = 0,

we have (z1,y1) = O and (22,y2) = (—x3,ys), which implies that the constant is equal to
/12 dx n 2 dx —0

o Vf@) Jo  f@)

as f(—z) = f(z). Combining (2.3.1.2-3), we obtain

(z1,y1) (w2,y2) (—z3,y3)
/ w+/ w z/ w (2.3.1.4)
O (@] (@]

(modulo periods), with —z3 given by (2.3.1.1). This is precisely Euler’s formula, assuming that x1, 24, 23 are
distinct. However, the left hand side of (2.3.1.4) is a holomorphic function of Py = (z1,y1), Po = (22,y2) €
V(C), and so is the right hand side, provided the denominator in (2.3.1.1) does not vanish. This implies
that (2.3.1.4) also holds in the case (z1,y1) = (72,%2), provided nz] # 1.

(2.3.1.3)
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(2.3.2) Question. We have found 4 intersection points of V(C) and D, ;(C). According to Bézout’s
Theorem, the projective curves associated to V and D, should have 2 - 4 = 8 intersection points. Where
are the remaining 8 — 4 = 4 points?

(2.3.3) Exercise. Let f(x) = 23 + Az + B be a cubic polynomial with distinct roots. Show that Abel’s
method applies to the differential w = dx/y on the curve V : y? = f(z) and the family of lines L, 1, : y = ax+b.
Deduce an explicit addition formula for the integral

/P dx
o Vi3+Ar+ B’

Are some choices of the base point O better than others?

(2.3.4) Exercise. Generalize the calculations from 2.2.5-7 to the case when deg(f) = 2m — 1 > 3 is an
arbitrary odd integer.

2.4 General Remarks on Abel’s Theorem
(2.4.1) Abel was interested in addition formulas for general integrals of the form

P
/ w,
o

where w is an algebraic differential on the set of complex points V(C) of an algebraic curve V, O € V(C) is
a fixed base point and P € V(C) a variable point. His main insight was to consider sums

Pi(X) Pa(X)
/ w.'.._'_/ w,
O o

where Py(A),..., Py(\) are the intersection points of V with an auxiliary algebraic curve C), depending on
a parameter A = (A1,...,A.) € C". More precisely, the points in the intersection V' (C) N Cy(C) naturally
appear with multiplicities reflecting the order of contact between the two curves:

R
Formally, we consider V(C) N C)(C) as a “divisor” on V(C), i.e. a formal linear combination
D) =Y ni(\)(B(N) (nj(A) € Z, P;(X) € V(C))
J

(in our case all coefficients n;(\) are positive) and put

D) P\
/ w = an(/\)/ w (2.4.1.1)

(@] (@]

(which is well defined modulo the periods of w).
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(2.4.2) Abel’s Theorem states that, for suitable differentials w and certain families of auxiliary curves Cj,
the “Abel sum” (2.4.1.1) (modulo periods) does not depend on A. This can be reformulated intrinsically as
follows: geometric properties of V' and of the family C define an equivalence relation

D(\) ~ D(N)

D
/ w
o
(modulo periods) depends only on the equivalence class of the divisor D. We have seen several examples of
this phenomenon:
(2.4.3) Circle. V=C:2?2+y?>=1,w=dy/z, O = Ly :y = ax +b, where a # =i is fixed and \ = b is
variable.

on the intersection divisors, and the value of

(2.4.4) Hyperelliptic integrals. V :y? = f(x), where f(z) is a polynomial of even degree 2m > 4 with
distinet roots, w = 2¥ dz/y (0 < k <m —2),

Ox=Cup:(ap+arx+ - +ag2) =y (by+ bz + -+ bdedQ).
This also works for k = m — 1, if we require in addition that by, = caq, (c € C* constant) if dp = dg + m.
(2.4.5) Elliptic integrals. V : y? = f(x), where f(x) is a polynomial of degree 3 with distinct roots,
w=dx/y, C\:y=azx+b (A= (a,b)).
(2.4.6) Questions: (i) In each of the above examples, what exactly is the equivalence relation on divisors
defined by the intersections with the family C\?

(ii) Does this equivalence relation admit an intrinsic description in terms of V' alone?
(iii) For which differentials does Abel’s Theorem hold?

(iv) Conversely, if the integrals
D D’
fye= ),
o o

are equal (modulo periods) for sufficietly many differentials w, does it follow that D ~ D’? Consider, for
example, the intersections of the circle C'(C) with the family of conics

CL ta12” + aswy + asy® + aaxr + asy + ag = 0, p=(a,...,a).
Denoting the intersection divisor C(C) N C}, by D’(p), under what conditions on ji1, 2 does one have

D’ (p1) D’ (n2)
/ wz/ w (mod2nZ)?

o o
See 3.8 below for the answer.

3. A Crash Course on Riemann Surfaces

This section contains a brief survey of basic facts on Riemann Surfaces. More details can be found in ([Fo],
Ch. 1, Sect. 1,2,9,10; [Fa-Kr 1], Ch. 1; [Ki], Ch. 5,6). For elementary properties of holomorphic functions in
one variable we refer to ([Ru 2], Ch. 10). Complex manifolds of higher dimension are discussed in [Gr-Ha|
and [Wei 1].

3.1 What is a Riemann surface?

(3.1.1) A Riemann surface is a geometric object X locally isomorphic to an open subset of C. These
local pieces are glued together so that one can work with holomorphic (resp. meromorphic) functions and
differentials globally on X. We have already encountered several examples of Riemann surfaces, such as
P!(C), C(C) (= the complex points of the circle), C/27Z (= a cylinder), C/Z + Zi (= a torus). Here is
the standard (fairly impenetrable) definition.
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(3.1.2) Definition. A Riemann surface X is a connected Hausdorff topological space with countable basis
of open sets, equipped with a (holomorphic) atlas (more precisely, an equivalence class of atlases). An atlas
on X consists of a set of local charts (U,, ), where {U,} is an open covering of X and ¢, : Uy — ¢0(Uy)
is a homeomorphism between U, and an open subset of C. The local charts are required to be compatible
in the following sense: for each pair (U, ¢a), (Ug, ¢g) of local charts, the transition function

¢po s da(Us NUs) — ¢p(Us NUp)

is holomorphic. Two atlases are equivalent if their union is also an atlas.

(3.1.3) Definition. Let X be a Riemann surface. A local coordinate at a point x € X is a local chart
(Uas 2o) satisfying x € U, and z,(z) = 0.

(3.1.4) Remarks and examples. (1) One can replace C by C™ in 3.1.2; the geometric object X is then
called a complex manifold of dimension n.

(2) Morally, X is constructed by gluing the open sets ¢o(Uy) C C together along ¢, (U, N Ug), using the
transition functions ¢g o ¢!

(3) If zo is a local coordinate at x € X, other local coordinates are given by power series ) -, ¢,2} with
non-zero radius of convergence and ¢; # 0. B

(4) An open connected subset U C C is a Riemann surface, with one chart U — C given by the inclusion.
For each a € U, z4(2) = z — a is a local coordinate at a.

(5) X = PY(C) is a (compact) Riemann surface, with two charts U3 = X — {oc}, Uy = X — {0}, and
¢; : Uy — C given by ¢1(2) = 2, ¢2(2) = 1/z. The intersection Uy N Uz = C*, which means that X
is obtained from two copies of C glued along C* by the map z +— 1/z (this can be visualized using the
stereographic projection). For x = ¢ € C (resp. = ), 24(2) = z — a (resp. z4(2) = 1/z) is a local
coordinate at x.

3.2 Holomorphic and meromorphic maps

(3.2.1) Holomorphic maps and functions

(3.2.1.1) Definition. A map f: X — Y between Riemann surfaces X,Y is holomorphic at a point

x € X if there exist local charts (Uy, ¢o), © € Uy on X and (Vs,v3), f(x) € Vg on'Y such that the function
vpo fody’: palUa) — ¥5(Vs)

is holomorphic at ¢, (x). The map f is holomorphic if it is holomorphic at all points = € X.

(3.2.1.2) In the above definition, one can replace “there exist local charts” by “for all local charts”.

(3.2.1.3) If f is holomorphic (at x), it is continuous (at z).

(3.2.1.4) Definition. A holomorphic function on a Riemann surface X is a holomorphic map f : X —
C. Denote by O(X) the set of holomorphic functions on X (it is a commutative ring containing C).

(3.2.1.5) If Y is a Riemann surface, X a topological space and f : X — Y an unramified covering, then
there exists a unique structure of a Riemann surface on X for which f is a holomorphic map.

(3.2.1.6) If Y is a Riemann surface and G a group of holomorphic automorphisms of Y satisfying
(Vy €Y) (AU 3 y open) (Vg € G —{1}) g(U)NU =1,

then the projection f:Y — G\Y = X is an unramified covering and there exists a unique structure of a
Riemann surface on X (equipped with the quotient topology) for which f is a holomorphic map.

(3.2.1.7) Example: 3.2.1.6 applies, in particular, to quotients f : C — C/L of C by discrete (additive)
subgroups, i.e. by L = Zu or L = Zu + Zv, where u,v € C are linearly independent over R.
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(3.2.2) Meromorphic functions

(3.2.2.1) Definition. A meromorphic function on a Riemann surface X is a holomorphic map f :
X — PY(C) such that f(X) # {oo}. Denote by M(X) the set of meromorphic functions on X (it is a field
containing C).

(3.2.2.2) If X C C is an open subset of C, then 3.2.2.1 is equivalent to the usual definition.

(3.2.2.3) If (Uy, 24) is a local coordinate at z € X and f € M(X), then f o 2,! has a Laurent expansion

(fozg (=)= D anz"
n>ngo
converging in some punctured disc {z € C|0 < |z| < r}. One often writes “f =" a,22" in U,.
(3.2.2.4) Definition. The order of vanishing of a non-zero meromorphic function f € M(X) — {0} at

x € X is defined as
ord;(f) =min{n € Z|a, #0} € Z

(3.2.2.5) The integer ord,(f) does not depend on the choice of a local coordinate; f is holomorphic at x

<= ordz(f) > 0.
(3.2.2.6) Example: Let X = P!(C) and f(z) = [[;(z—a;)"s, where a; € C are distinct and n; € Z. The
description of local coordinates on X from 3.1.4(5), together with the identity

f() = /272 [[a—a;/z)m
imply that

ord,, = nj, ordeo (f) = —an.
J

(3.2.2.7) ord, is a discrete valuation: If f,g € M(X) — {0}, then

ordy(fg) = ords(f) +ords(g),  orda(f +g) = min(ord,(f), ordz(g))

(with equality if ord, (f) # ord.(g)).

(3.2.2.8) If f € M(X)—{0}, then the set Z(f) = {x € X |ord,(f) # 0} is a closed discrete (= the induced
topology on Z(f) is discrete) subset of X. In particular, if X is compact, then Z(f) is finite.

(3.2.2.9) If g,h € M(X) satisty g(x) = h(z) for all z € A, where A C X is a closed non-discrete subset of
X, then g = h (apply 3.2.2.8 to f =g —h).

(3.2.2.10) If f : X — Y is a non-constant holomorphic map and g : ¥ — P!(C) a meromorphic function
on Y, then f*(g) = go f: X — P!(C) is a meromorphic function on X. The map f*: M(Y) — M(X)
is an embedding of fields (over C).

(3.2.3) Structure of non-constant holomorphic maps

(3.2.3.1) Proposition—Definition. Let f : X — Y be a non-constant holomorphic map between Rie-

mann surfaces and x € X. Then there exist local coordinates z, (resp. zg) at x (resp. f(z) € Y) such
that

(20 fozg')(z) =2° (“z8 = 257),
where e = e, > 1 is an integer, called the ramification index of f at x (it does not depend on any choices).
The ramification points of f are the points x € X with e, > 1; they form a discrete subset of X.

(3.2.3.2) Corollary. A non-constant holomorphic map between Riemann surfaces is open.

(3.2.3.3) Corollary of Corollary. If X is a compact Riemann surface, then O(C) = C.

Proof. If not, then there is a non-constant holomorphic map f : X — C; its image f(X) C C is both
compact and open, which is impossible.
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(3.2.3.4) Corollary. If f : X — Y (as in 3.2.3.1) is bijective, then e, = 1 for every x € X and
f~':Y — X is holomorphic.

(3.2.3.5) Proposition. Let f : X — Y be as in 3.2.3.1. Assume, in addition, that f is proper, i.e.
f~YK) c X is compact for every compact subset K C Y (this holds, for example, if both X and Y are
compact). Then there is an integer deg(f) > 1 (“the degree of f”) such that

(VyeY) Z ey = deg(f).
zef~1(y)
Ife, =1 for all x € X, then f is an unramified covering.

(3.2.3.6) Example: If X =Y = C and f(z) = 22, then e, = 1 (resp. e, = 2) for z # 0 (resp. z = 0) and
deg(f) = 2.

(3.2.3.7) Example: If X is compact, f: X — Y = P!(C) is a non-constant meromorphic function and
y =0 (resp. y = o0), then e, = ord,(f) (resp. e, = —ord,(f)) for each = € f~1(y). In particular,

deg(f) = > ordy(f)=— Y ordu(f).

F(@)=0 F@)=o0

3.3 Holomorphic and meromorphic differentials

(3.3.1) Holomorphic functions revisited. Let X be a Riemann surface with an atlas {(Ua, ¢a)}-
holomorphic function f : X — C defines, for each a, a holomorphic function f, = fo ¢ ! € O(¢pa(Us)
On ¢4 (U, NUg) these functions satisfy the compatibility relation

A
).

fﬁ Owaﬁ = fou

where 9,5 = ¢gog, ! denotes the transition function. Writing z, for the standard coordinate on C D ¢, (U,),
we can reformulate the compatibility relation as follows:

fa(za) = fa(23) = f3(ap(za))-
Meromorphic functions on X admit an analogous description, with f, € M(¢(Uy)).

(3.3.2) Definition. A holomorphic differential w on X is defined by a collection of holomorphic functions
9o € O(¢(Uy)) such that the formal expressions wy, = go(2a) dzo are compatible on ¢, (U, NUp) as follows:

Ja (Za) dze = 95(#@5(%)) dzﬁ = 9gp (%5(%)) 1/’;5(2(1) dzq,

le. go = (ggo 1/)045)1//&5. The set of holomorphic differentials on X will be denoted by Q'(X) (it is an
O(X)-module).

(3.3.3) Definition. A meromorphic differential on X is defined by a collection of meromorphic functions
Ja € M(0o(Uy)) satisfying the same compatibility relations as in 3.3.2. Meromorphic differentials form a
vector space over M(X), which will be denoted by QL . .(X).

mer

(3.3.4) Examples: (i) If f € O(X) (resp. € M(X)) is given by a collection f,(z4) as in 3.3.1, then
the collection of functions g, = f/(z4) defines a differential df € Q'(X) (resp. € QL. (X)), for which
(df)a = f(;(zoz) dze = dfa~

(ii) If f:Y — X is a holomorphic map and w € Q(X), one can define the pull-back f*(w) € Q'(Y) as
follows: let (Uy, o) be an atlas of X and assume that w is given is given by a collection g, € O(pn(Uy))
as in 3.3.2. Choose an atlas (Vg, %) of Y such that, for each 3, f(V3) C U, for some a = j(5). In terms
of the standard coordinates zg on Vs (resp. zo = zj(3) on Us = Uj(g), the map f is defined by the formula
za = f3(28), where fg = ¢q0 fo wgl. The differential f*(w) is then given by the collection of functions
(95(3) © fa)f5 € O(¥p(Vs)). The same construction works for meromorphic differentials. In particular,
f*(dh) =d(ho f) for any h € M(X).
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(3.3.5) Definition. Let w € Q]

mer(X) — {0} and x € X. Choose a local coordinate (U, z,) at x and write
Wo = foz(zoz) chw

fa(za) = Z anzy.

n>no

The order of zero of w and its residue at x are defined as

ord, (w) = ord,(fa), res; (w) = a_j.

(3.3.6) Exercise. Show that both ord, (w) and res, (w) are independent on the choice of a local coordinate.

(3.3.7) Example: For X = P1(C) and w = dz (where z is the standard coordinate on C = X — {o0}),
w = d(z — a) for every a € C, hence ord,(dz) = 0. Taking v = 1/z as a local coordinate at co € X, the
identity dz = —u~2 du shows that ord., (dz) = —2.

(3.3.8) Lemma. If f € M(X)— {0} and ord,(f) # 0, then ord, (df) = ord,(f) — 1.

anzy, where m = ord,(f) # 0 and a,, # 0.

Proof. In a local coordinate 2, at z, we have fo(za) = 32,5,
Then (df)a = ", Manzl " dza, hence ord, (df) =m — 1.

(3.3.9) The statements in 3.2.2.8-9 hold for meromorphic differentials.

(3.3.10) The Residue Theorem. If X is a compact Riemann surface and w € QL (X) — {0}, then

Z res, (w) = 0.

zeX

(3.3.11) Corollary. If X is a compact Riemann surface and f € M(X) — {0}, then

Z ord,(f) = 0.

zeX

Proof. The meromorphic differential w = df /f satisfies res,(w) = ord,(f) for each z € X. (Alternatively,
one can apply 3.2.3.5 to f : X — P1(C), using 3.2.3.7.)

(3.3.12) Exercise. Deduce 2.2.2 from 3.3.10.

(3.3.13) Lemma. If f : X — Y is a non-constant holomorphic map between Riemann surfaces, x € X
and zg a local coordinate at f(x) € Y, then

ord, (f*(dzg)) = ey — 1.
Proof. Using 3.2.3.1, we can assume that f is given by zg = 25*, where z, is a local coordinate at x, hence

ord, (f*(dzg)) = ord, (d(257)) = ord, (ez 25" tdzy) = €, — 1.

(3.3.14) Lemma. Let X be a Riemann surface. If wi,ws € QL . (X)—{0}, then there exists a meromorphic
function f € M(X) — {0} such that w; = fwa.

Proof. If wq,ws are given locally by (non-zero) meromorphic functions ¢1 4, 92« satisfying the compatibility
relations from 3.3.2, then the quotients (¢1,a/g2,o) define a (non-zero) meromorphic function f, as in 3.3.1.

Thus wy = fws.
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(3.3.15) Theorem [Fa-Kr 1, Ch. 2]. Let X be a Riemann surface. Then M(X) # C and QL (X) # {0}.

mer

(3.3.16) Corollary. For every Riemann surface X, the vector space QL (X) has dimension 1 over M(X).

mer

(3.3.17) We refer to ([Fo], Ch. 1, Sect. 9, 10; [Fa-Kr 1], 1.3, 1.4 and [Ki], Sect. 6.1) for the calculus of
differential forms and their integration on Riemann surfaces.

3.4 Theorem on implicit functions
(3.4.1) Example: Consider the circle C : f(z,y) =22 +y?> — 1 =0.

(0]

As 0f/0x(0,1) = 0, the tangent to C at the point (0, 1) is horizontal. Moreover, for every open set U > (0,1)
(either in R? or in C?), the intersection of U with C' (i.e. with either C(R) or C(C)) is not a graph of any
function y — (z(y)), because there are two possible values of x for y arbitrarily close to 1. On the other
hand, it is given by a graph of a function = — y(z)) (for sufficiently small U). This is a special case of the
following result.

(3.4.2) Theorem on Implicit Functions (holomorphic version). Let U C C? be an open set, f €
O(U) a holomorphic function of (x,y) € U and Z = {(x,y) € U| f(x,y) = 0} its set of zeros. Assume that
P = (zp,yp) € Z is a point satisfying 0f /0x(P) # 0 (i.e. “the tangent to Z at P is not horizontal”). Then
there exists an open set V. .C U, V' 5 P, such that 9f/0z(Q) # 0 for all Q € ZNV, the horizontal projection

p2: ZNV —p(ZNV) 3 yp, pa(x,y) =y

is a homeomorphism and its inverse is given by y — (z(y),y), where x(y) is a holomorphic function on the
open set p2(ZNV) 3 yp.

(3.4.3) Exercise. Generalize 3.4.2 to a system of holomorphic equations

f1(217~~~7zn):"':fm(zlv~~~azn):0 (m<n)

3.5 Orientation of Riemann surfaces

(3.5.1) Orientation of real vector spaces. Let V be a (non-zero) real vector space of finite dimension
n. The set B(V') of (ordered) bases of V' is a principal homogeneous space under GL(V') (i.e. for each pair
of bases u,v there exists a unique element g € GL(V') satisfying g(u) = v). This defines a natural topology
on the set B(V) (exercise: how?). By definition, two bases u, v define the same orientation of V iff they lie
in the same connected component of B(V), i.e. iff v = g(u) with g € GL(V)° contained in the connected
component of the identity of GL(V), i.e. iff det(g) > 0.

Equivalently, fix a volume element w on V' (i.e. a non-zero element of the highest exterior power of the
dual space V*). Then the bases u, v define the same orientation of V' iff w(uq, ..., uy,) and w(vy, ..., v,) have
the same sign.

(3.5.2) Orientation of C. The standard orientation of C (considered as a real vector space) is given
by the ordered basis 1,i. Let x,y be the real and imaginary part, respectively, of the canonical complex
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coordinate z = z + iy on C. Then the standard volume element w = z A y satisfies w(1,7) > 0. In spite of
appearances, this “standard” orientation of C is not canonical: it depends on the choice of i. Some algebraic
geometers therefore keep track of ¢ (more precisely, of 274) in all the formulas.

(3.5.3) Orientation of a Riemann surface. The construction from 3.5.2 can be used to define an
orientation of any Riemann surface X. If {(U,, do)} is an atlas of X, one can use the local charts to
transport the standard orientation of C to X, at least infinitesimally (i.e. to the tangent spaces of X). We
must check that these orientations agree on the intersections U, NUg. Let us decompose the local coordinates
Za, 23 (at the same point x € X)) into their real and imaginary components zo, = To + Wa, 23 = Tg + 1Y3.
For small € > 0, the vectors ¢, ie based at 0 = z,(x) are mapped by the transition function 1,3 = 23 o 25t
to

95 | .Oyp 2
€ . —i—zawa + O(e%)

; dzp | Oys 2
i€ — e —Haya + O(e%).

This implies that the infinitesimal change of orientations is given by the sign of the determinant of the
(non-singular) Jacobian matrix
925 Oys
0T Ox o
M= <8_5 %) '

0Yya  OYa
Hovever, the Cauchy-Riemann equations tell us that the matrix M is of the form

A -B
M= :
B A

where A, B are real valued functions; thus det(M) = A? + B? > 0, which proves the compatibility of the
two orientations.

(3.5.4) Explicitly, if (Ua, zq) is a local coordinate on X, V' C U, an open subset and f : V — Rxq a
non-negative (differentiable) function for which f~%(0) C V is a discrete set, then

3 / fdza ANdZq > 0,
2 Jv
as
%d(x +iy) Ad(z — iy) = dz A dy.
In particular, if w € Q*(V) — {0}, then
i

—/wmzi/|fa(za)\2dzaAdza>o (3.5.4.1)
2 Jy 2 ),

(writing we = fo(2a) dza)-

3.6 Genus and the Riemann-Hurwitz formula

(3.6.1) The genus. Let X be a compact Riemann surface. By 3.5.3, X is orientable, hence homeomorphic
to a sphere with g handles. The integer g = g(X) > 0 is called the (topological) genus of X.

(3.6.2) The Euler (— Poincaré) formula. For every triangulation of X, denote by s; the number of
simplices of dimension i = 0, 1,2 in the triangulation. Then

S0 — 81+ 82 =2 —2¢g(X).
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(3.6.3) The Riemann-Hurwitz formula. Let f: X — Y be a non-constant holomorphic map between
compact Riemann surfaces. Then

29(X) —2 = (2(Y) — 2)deg(f) + > (ea — 1).
reX

(3.6.4) Exercise. Prove 3.6.3 by considering suitably compatible triangulations of X and Y.

(3.6.5) Example: If X is a compact Riemann surface and f : X — P1(C) is a holomorphic map of
degree deg(f) = 2, then

29(X)—2=-4+|9], S={reXl|e,=2}={r e X|e, #1};

thus there are |S| = 2n (n > 1) ramification points of f and g(X)=n — 1.
3.7 Smooth complex plane curves are Riemann surfaces

(3.7.1) Smooth affine plane curves

(3.7.1.1) An affine plane curve over a field K is a polynomial equation

Ve fz,y) =0,

where f(x,y) € K|[z,y] is a polynomial with coefficients in K. Note that, with this definition, the curves
“y = 0" and “y? = 0”7 are not the same objects.

(3.7.1.2) Definition. Let L D K be a field and P = (xp,yp) € V(L) a point on V with coordinates in L.
We say that P is a smooth point of V' if

af . of
(555 m) 2 0.0

(3.7.1.3) Examples: (i) Each point of V;:y =0 is smooth.
(i) No point of Va5 :y? =0 is smooth.
(iii) The point (0,0) is not smooth on either of the curves
Va:y? —a® =0, Vity? —a?(x+1).
All other points on V3, V, are smooth.

(3.7.1.4) Exercise. Smoothness of P on V is invariant under every affine change of coordinates

x=azx + by +c, Y =da’ +ey + f, ae — bd # 0.

(3.7.1.5) Definition. We say that V' is a smooth affine plane curve over K if every point P € V(K)
is smooth on V' (where K is an algebraic closure of K ).

(3.7.1.6) Exercise. IfV is smooth, then
(Vfield LD K)(VQ € V(L)) Q is smooth on V.

[Hint: Use the Nullstellensatz.]

(3.7.2) Proposition. If K C C is a subfield of C and V is a smooth affine plane curve over K, then:

(i) The set of complex points V(C) of V' has only finitely many connected components.

(ii) Each connected component X of V(C) has a natural structure of a Riemann surface (in which the
functions x,y are holomorphic on X ).
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(iii) IfV : f(x,y) = 0 is geometrically irreducible (i.e. if the polynomial f is irreducible in K[z,y] <= f
is irreducible in Clz,y]), then V(C) is connected.

Proof. We can assume that K = C. (i) Exercise. (ii) Put

X ={P = (zp,yp) € X |0f/0x(P) # 0}, X, ={P = (xp,yp) € X|0f/0y(P) # 0}.

By 3.7.16, X = X, UX,. If P € X, (resp. P € X,), then 3.4.2 (Theorem on Implicit Functions) tells
us that there exists an open neighbourhood Up, (resp. Up,) of P contained in X, (resp. in X,) such
that the function y — yp (resp. x — xp) defines a homeomorphism between Up, (resp. Up,) and an
open neighbourhood Wp of 0 € C, and that X NUp, = {(fr(2),2 +yp)|z € Wp} (resp. X NUpy =
{(z+zp, fr(2) ]|z € Wp}), where fp(z) is a holomorphic function in Wp.

We want to show that the collection {(Up,,y —yp)|P € X} U{(Upy,x —zp)| P € X,} defines an
atlas on X.

If P,@Q € X, then the local coordinates y — yp and y — yg are compatible on Up, NUqg », 88 y —yg =
y—yp + (yp — yg) is a holomorphic function in y — yp (and similarly for the local coordinates x — zp and
x —aq for P,Q € Xy).

IfPeX,, Qe X,andU =Up, NUg,y # 0, then U C X, N X, and for R € U, z(R) —zq is a
holomorphic function of y(R) — yp (and vice versa), again by 3.4.2.

(iii) After a linear change of coordinates we can assume that

flay) =y" +ar(@)y" "+ + an() (aj(z) € Clz], n > 1)

(by an elementary case of the Noether normalization Lemma). As f is ireducible in C[z,y] = C[z][y], it is
irreducible in C(z)[y], hence the discriminant of f with respect to the y-variable disc, (f) € Clz] is non-zero.
It follows that

S = {z € C|discy(f)(z) =0}
is a finite subset of C. The projection p : V(C) — C (p(x,y) = z) on the first coordinate axis has the
following properties:
(a) (YVzeC) #p '(z)<n.
(b) (VzeC-18) #piz)=n.
() (V(z,y) ep(C—9)) f/0y(z,y) #0.

The Theorem on Implicit Functions implies that the restriction of pto Y = p~1(C—95) = V(C)—p~1(9)
is an unramified covering. As Y is dense in V(C), it is sufficient to prove that Y is connected.

Elementary properties of unramified coverings imply that, for each connected component Y; of Y, the
restriction of p to p; : ¥; — C — S is also an unramified covering. In particular, Y =Y;U--- Yy is a disjoint
union of N < n connected components, thanks to (a). Applying the Theorem on Implicit Functions again,
we see that, locally on C — S, the projection p; admits sections given by the formulas

z — (z,8:(x)), 1<i<ry),

where each s; is holomorphic. The coefficients of the polynomial

Tj

fi =TI =si(x)) € 0(C - 9y

=1

are holomorphic functions defined globally on C — S, which yields a factorization

f="J1fn €Clz,yl

The same argument as in the proof of the Gauss Lemma (“the contents of a product of polynomials is equal
to the product of the contents of the factors”) shows that each factor f; is contained in C[z,y]. Irreducibility
of f then implies that N = 1 as claimed.
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See also ([Ki], 7.22) or ([Fo], 8.9) for variants of this proof.

(8.7.3) Example: For the circle V. =C : 2?2 +4y*> -1 =0and P = (zp,yp) € C(C), y — yp is a local
coordinate at all P # (0,+1) and = — zp is a local coordinate at all P # (£1,0).

(3.7.4) Smooth projective plane curves

(3.7.4.1) A projective plane curve over a field K is a polynomial equation

V:F(X,Y,Z) =0,
where F(X,Y,Z) € K[X,Y, Z] is a homogeneous polynomial of degree d > 1 with coefficients in K.
(3.7.4.2) Let P= (Xp:Yp: Zp) € V(L) be a point on V with homogeneous coordinates in a field L D K.
The point P is contained in one of the standard affine planes {X # 0}, {Y # 0}, {Z # 0} covering P?. If,
for example, Yp # 0, then P € V(L), where
Vo flu,v) = F(u,1,v) =0

is the equation of the affine plane curve

VN{Y #£0} c{Y #0} = A2

written in the affine coordinates u = X/Y,v = Z/Y on {Y # 0} = A% We say that P is a smooth point
of V if it is a smooth point of V.

(3.7.4.3) Exercise. Show that P is a smooth point of V if and only if

oF OF oF
(5x(P) 5P 557 ) # 0.0.0)

Deduce that the definition of smoothness in 3.7.4.2 does not depend on any choices and is invariant under a
projective change of coordinates (by an element of PGL3). [Hint: Use the fact that XDx + Y Dy + ZDy
(where Dy = 0/0T ) acts on F by multiplication by deg(F).]

(3.7.5) Proposition. If K C C is a subfield of C and V is a smooth projective plane curve over K, then:
(i) The polynomial F(X,Y, Z) is irreducible in C[X,Y, Z].

(ii) The set of complex points V(C) of V is connected.

(iii) V(C) has a natural structure of a compact Riemann surface.

Proof. (i) Exercise (use Bézout’s Theorem). (ii) See 3.7.2(iii). (iii) Exercise (use 3.7.2 and the compactness
of P?(C)).

(3.7.6) Example: For the projective circle V = C : X2+ Y2 — 22 =0, C(C) = P}(C) (cf. 0.3.1.0 and
3.8.4 below).

(3.7.7) A hyperelliptic example: Let K be a field of characteristic char(K) # 2 and

f(@)=ao(x— 1) (z —an) = apx” + 12"~ + -+ + a, € Klz]

a polynomial with coefficients in K of degree n > 3 with distinct roots a1,...,a, € K. Consider the affine
plane curve

Viy?—f(z)=0

and the corresponding projective plane curve

ViY2Z2" 2 —ap(X —arZ) - (X —anZ) = Y222 — (X" + a1 X" Z + -+ anZ") =0
(where x = X/Z,y =Y/Z).
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We are looking for non-smooth points on V.IfP= (z,y) € V(K) is a non-smooth point on V, then

y?— fx)=0, 2y=0, —f'(z)=0.

As 2 is invertible in K, it follows that y = 0, hence f(x) = f'(x) = 0. This contradicts our assumption that
f has only simple roots, hence the affine curve V' is smooth.
What about the points at infinity? There is only one such point O, as

VIE)-V(E)=V(E)N{Z=0}={0=(0:1:0)},

contained in the standard affine piece {Y # 0}. Passing to the affine coordinates v = X/Y = z/y,v =
Z]Y = 1]y, the point O corresponds to (u,v) = (0,0), and the affine curve V N {Y # 0} is given by the

equation

Z\"? X Z X Z

y) “l\ly -oy) oy oy ) =0
ie.

glu,v) = v"% — (apu™ + aru™ v+ + a,v™) = 0.

As

P o 1, ifn=3

%90,00=0,  Z(0,0) =

du v 0, if n > 3,

it follows that O = (0 : 1 : 0) is a smooth point of V if and only if n = 3.
(3.7.8) The hyperelliptic example continued: If n = 2m > 4 is even, then there is a simple way to
resolve the singularity of the curve V at O: the polynomial
g(u) = u®" f(1/u) = azmu®™ + -+ + a1u + ag
has distinct roots and satisfies g(0) = ag # 0. Consider the affine plane curves
Viy?—f(z)=0, W:v®—g(u)=0;

they are both smooth. The formulas

u=1/z, v=y/z™, x=1/u, y=uv/um. (3.7.8.1)
define an isomorphism

Vn{z#£0 —Wn{u#0}

Imitating the construction of P!(C) by gluing together two copies of C along C* via the map 1/z (cf.
3.1.4(5)), we can glue together V and W along their open subsets V N{z # 0} (resp. WN{u # 0}) according
to the formulas (3.7.8.1). The resulting object will be a projective curve U (exercise!) which is smooth
(although we have not yet defined smoothness for non-plane curves). There are exactly two points O+ in

U(K) - V(K) ={0+ = (u,v) = (0,£Vao) };

they correspond to the two branches of 1% meeting at O, i.e. to the two choices of a sign in the asymptotic
behaviour

(,y) — O1 <= z— 00, y/z™ — ++/ap.

(3.7.9) Exercise. Resolve the singularity of V at O if n =2m —1 > 5 is odd.
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3.8 Geometry of the circle revisited

We are now ready to answer Question 2.4.6(iv) about the values of integrals of w = dy/z on (the complex
points of) the circle C': 2% + y? = 1.

(3.8.1) Let us return to the situation considered in 2.1 (in the light of the discussion in 2.4): intersecting
the affine circle C(C) with two lines

Lop:y—ar—>b=0, La/yb/:y—a/x—b’:O

(where a,a’ € C — {%i}) we obtain intersection divisors

D=(P)+(P), D' =(P)+(P)
on C(C). We know that (using the notation from (2.4.1.1))

D D’
aza':>/ wE/ w (mod 27Z)
o o)

(in fact, it is easy to see that the converse implication also holds). Our goal is to find an abstract reformulation
of the condition “a = a’”. To this end, consider the function

y—axr—> Y —aX —-bZ

vy A G g A

where ¢ € C* is a constant, to be specified later. What can we say about f? It is a meromorphic function
on the projective circle C(C), with zeros at Py, P, and poles at Pj, Pj. More precisely, the divisor of f,
defined as

div(f) =) _ordp(f)(P),
P

is equal to

div(f) = (P1) + (P2) = (P{) = (P;) = D - D".
We can also look at the behaviour of f at the two points at infinity Py = (1:4i:0) € C(C) — C(C):

JP) =il Py =

i—a'’

—i—a'
Choosing ¢ so that f(Py) =1, we have

(t —a')(—i—a) _ 1+ad +i(a’ —a)
(i—a)(—i—a') 14ad —i(a —a)

f(P-) =
hence

a=d < f(P)=f(P.)=1
This suggests the following tentative answer to Question 2.4.6(iv).

(3.8.2) Conjecture. Let Dy =}, m;(P;), D2 =}, ni(Qr) be two divisors on C(C) of the same degree
>_;my = >,k and such that P; # Py # Qy for all j, k. Then

D1 D»> ~
/o w= /o w (mod27Z) <= (g € M(C(C))*) ¢g(Py)=g9g(P-)=1, D; — Dy =div(g)
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(the implication “—=" being a special case of Abel’s Theorem).

(3.8.3) Exercise. Generalize the calculation from 3.8.1 to the case when Lq Is replaced by the curve
(2.2.7.4). What is the relation to the conditions (2.2.7.5) and to 3.8.27

(3.8.4) Exercise. The map
c(C) — C7, (z,y) — z=z+1iy

extends to a holomorphic isomorphism of Riemann surfaces A : C(C) — PY(C), under which P, (resp.
P_) is mapped to 0 (resp. 00) and A*(dz/z) = idy/x = iw.

(3.8.5) Proof of Conjecture 3.8.2. Applying A, we are reduced to prove the following statement about

the multiplicative group C*:
Let Dy =3, m;(P;), Da = > ; ni(Qy) be two divisors on P!(C) of the same degree >_;mj = ny and

such that P; # 0,00 # Qy for all j, k. Writing D = Dy — Dy =3 _,(b;) — >_,(a;), then

dz b dz . 1 N .
/D — = Z/ - = 0€ C/2miZ < (g e M(P(C))*) g¢(0) =g(o0) =1, div(g) = D.

z

Noting that (cf. 3.9.7 below)

fz) = H j - Zj (3.8.5.1)

is the unique function f € M(P'(C))* satisfying div(f) = D and f(co) = 1, the statement follows from the

fact that
dz b;
exp /_>: - = f(0),
([4 T =10

as
d d

—Z—OEC/27TZZ = exp(/ —Z>:1€C*.
D % D Z

(3.8.6) The additive group (C,+). Let us try to apply the same argument to the differential w = dz €
QYC). If D = >-5(b5) = >25(ay) (aj,b; € C) is a divisor of degree zero, then the function f(z) defined by

(3.8.5.1) is, as in 3.8.5, the unique function f € M(P!(C))* satisfying div(f) = D and f(cc) = 1. The
integral

b.
/dz::§ /sz:E b~ a;eC
b i i i

has a well-defined value in C (there are no periods, as C is simply connected). Writing the power series
expansion of f at the point co in terms of the local coordinate w = 1/z, we see that

f= H1_ =1+ Zaj Zb w+ O(w?),

hence

/dZ:O = Zaj—ijzo <= ordeo(f —1) > 2.
D

J J
3.9 Divisors on Riemann surfaces

Throughout 3.9, X is a Riemann surface. The results from 3.8 suggest that the following objects could be
of interest.
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(3.9.1) Definition. A divisor on X is a locally finite formal sum

D= np(P) (np € Z),
PeX
where “locally finite” means the following: denoting by supp(D) := {P € X |np # 0} the support of D,
we require that, for each compact subset K C X, the intersection K N supp(D) be finite (in particular, if
X itself is compact, then “locally finite” = “finite”). The set Div(X) of all divisors on X is an abelian
group with respect to addition. The divisor D is effective (notation: D > 0) if all coefficients np > 0 are
non-negative.

(3.9.2) Definition. The divisor of a meromorphic function f € M(X)* (resp. the divisor of a
meromorphic differential w € QL (X) —{0}) is

div(f) = Z ordp(f)(P), div(w) = Z ordp(w)(P)
pPex Pex
(the sums are locally finite, as observed in 3.2.2.8 and 3.3.9, respectively). The divisors of the form div(f)
(f € M(X)*) are called principal divisors; they form a subgroup P(X) C Div(X).
(3.9.3) Definition. If X is compact, then the degree of a divisor D =), np(P) € Div(X) is deg(D) =
S pnp € Z (a finite sum!). Denote by Div’(X) = Ker(deg : Div(X) — Z) the subgroup of divisors of
degree zero. By 3.3.11, P(X) is in fact contained in Div’(X).

(3.9.4) The map div : M(X)* — Div(X) is a homomorphism of groups (because of the first statement in
3.2.2.7) with image P(X). If X is compact, then the kernel of div is equal to C*, by 3.2.3.3.

(3.9.5) Definition. The divisor class group of X is the quotient abelian group Cl(X) = Div(X)/P(X).
If X is compact, then the subgroup of divisor classes of degree zero is denoted by C1°(X) = Div®(X)/P(X).

~— —

(3.9.6) To sum up, if X is compact, then there are exact sequences
0— C* — M(X)*5Div(X) — CU(X) — 0
0 —C" — M(X)*iDivO(X) — CI°%(X) —0

0 — Cl(X) — CUX)-2&7 — 0.
(3.9.7) Exercise. Show that CI°(P(C)) = 0.
(3.9.8) Exercise. Show that M(P!(C)) = C(z), i.e. every meromorphic function f on P1(C) is a rational
function in the standard coordinate z. [Hint: Consider the divisor of f.]
(3.9.9) If X is not compact, then every divisor on X is principal, i.e. Ci(X) = 0 ([Fo], 26.5).

(3.9.10) Exercise-Definition. Let f : X — Y be a non-constant proper holomorphic map between
Riemann surfaces. Then the map

yey zeX
defines a homomorphism of abelian groups f* : Div(Y) — Div(X) satisfying
(Vg e M(Y)")  f*(div(g)) = div(go f)
(VD € Div(Y)) deg(f*(D)) = deg(f) deg(D) (provided X is compact).

(3.9.11) Definition. Let X be a compact Riemann surface and m = Y mp(P) > 0 an effective divisor
with support S = supp(m). Define

Divg(X) = {D € Div(X) [supp(D) NS =0},  Dive(X) = Divg(X) N Div’(X),
Po(X) ={div(f)| f e M(X)*, (VP € S)ordp(f —1) > mp}
Cln(X) = Divg(X)/Pn(X), CI%(X) = Divy(X)/Pu(X).
The abelian group Cly,(X) is called the divisor class group of X with respect to the modulus m.

(3.9.12) Using this notation, the calculations from 3.8.5-6 can be reformulated as follows.
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(3.9.13) Proposition. (i) The maps
Div?opo}(Pl(C)) — C/2miZ, w=dz/z
D~ / w, o )
D Div{,,(P*(C)) — C, w=dz
induce isomorphisms of abelian groups

(ii) The maps
(C*, %) — Cllyy4(00)(P'(C)), @+ the class of (a) — (1)

(C,+) — Clg(oo)(Pl(C))7 a +— the class of (a) — (0)
are isomorphisms of abelian groups.

(3.9.14) Corollary. The maps

x

P +— the class of (P) — (O), D — / &y
D

induce isomorphisms of abelian groups
(C(C),B) =5 ClYp, y, (p,(C(C)) = C/2nZ.

Proof. Apply the isomorphism A from Exercise 3.8.4.

(3.9.15) Why is this interesting? The point is that the group law “B” on C(C), which was originally
defined by transporting the additive group law “+” on C/27Z via the composite bijection

Py
C(C) = CJ2rZ, pH/ dy
o) X

admits a purely algebraic description, via the bijection

C(C) =5 Clfp, 4 (py(C(C)), P+ the class of (P) - (O).

(3.9.16) Exercise. Let m = (ay) + --- + (an) + (00) € Div(P(C)), where ay,...,a, € C (n > 0) are
distinct points in C. Determine CI3,(P*(C)), by generalizing 3.9.13(i).

4. Cubic curves y? = f(z)
4.1 Basic facts
(4.1.1) Let

f(x) = (= e1)(z — e2)(z — e3) = 2° + az® + bx + ¢ € Cla]

be a cubic polynomial with distinct roots e; € C. Let E be the projectivization of the affine plane curve
2 .
y* = f(z), ie.

E:YZ=(X-e12)(X —exZ)(X — e37)
(where x = X/Z,y = Y/Z). We know from 3.7.7 that E is a smooth projective plane curve over C with

a single point at infinity O = (0:1:0) (E(C)Nn{Z =0} = {O}). By 3.7.5, E(C) is a compact Riemann
surface (one can observe directly that E(C) is connected; see the pictures in [Re], p.44 or [Cl], 2.3).
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(4.1.2) Exercise. Show that the projection map

p:E(C) —PYC), plz,y)=z, p0)=c
is holomorphic, of degree 2 and the set of ramification points {(ey,0), (e2,0), (e3,0),0} (with ramification
indices equal to 2).

(4.1.3) Corollary. By the Riemann-Hurwitz formula, the genus g = g(E(C)) of E(C) satisfies 2g — 2 =
(=2)-244(2—1) =0, hence g =1.

4.2 Holomorphic differentials on E(C)

(4.2.1) The affine coordinates x and y are non-constant meromorphic functions on E(C) satisfying y? =
f(x); thus

dx dy 1
w=—= € User
2y f'(2)

is a (non-zero) meromorphic differential on E(C).

(E(C))

(4.2.2) Proposition. w is a holomorphic differential on E(C) without zeros, i.e. ordp(w) = 0 for all
P e E(C) (<= div(w) =0).

Proof. Let P = (xp,yp) € E(C) —{O} be a point on the affine curve
V=E—{0}:h(z,y) =y*~ f(x) =0.

We know that P is a smooth point; this means that either 0 # dh/0x(P) = —f'(xp), in which case y — yp
is a local coordinate at P and

ordp(w) = ordp (%) =0,

or 0 # 0h/0y(P) = 2yp, in which case © — zp is a local coordinate at P and

wdete) =orts (12721 o,

For P = O we pass to the coordinates u = x/y,v = 1/y used in 3.7.7; then O corresponds to (u,v) = (0,0)
and the affine part EN{Y # 0} of FE is given by the equation

g(u,v) =v — (u—e1v)(u — eqv)(u — e3v) = 0.

As 0g/0v(0,0) # 0, u is a local coordinate at O, hence

3
ordp(u) =1, ordp(v) > 1, ordo(u —ejv) > 1, ordp(v) = Zordo(u —ejv) > 3.
j=1
By 3.2.2.7, we have
3
ordop(u — ejv) = min(1, ordp (v)) = 1, ordp(v) = Zordo(u —e;v) =3,
j=1
hence (using 3.3.8)

ordp(y) = ordp(1/v) = -3, ordp(z) = ordp(u/v) = -2, ordp (dz) = -3, ordp(dz/2y) = 0,

as claimed.
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(4.2.3) Proposition. w generates the space of holomorphic differentials on E(C): Q'(E(C)) = C - w.

Proof. If w1 € QY(E(C)) — {0}, then w; = f - w for some (non-zero) meromorphic function f € M(E(C))
(by 3.3.14). As w; is holomorphic, we obtain from 4.2.2
(VP € E(C)) 0<ordp(wi)=ordp(w)+ ordp(f) = ordp(f),
hence f € O(E(C)) is holomorphic; however, O(E(C)) = C, by 3.2.3.3.
(4.2.4) Analytic genus. Let X be an arbitrary compact Riemann surface. The dimension of the space of
holomorphic differentials
Jan(X) == dimc Q' (X)

is sometimes referred to as the analytic genus of X. It follows from the Riemann-Roch Theorem (see 77
below) that

(Vw € QL (X) = {0}) deg(div(w)) = 2gan(X) — 2 (4.24.1)

(note that deg(div(w)) does not depend on the choice of w, by combining 3.3.16 and 3.3.11).
If f: X — Y is a non-constant holomorphic map between compact Riemann surfaces and w €
QL. (Y) — {0}, then Lemma 3.3.13 implies that

mer
div(f*(w)) = f*(div(w)) + > (ea (4.2.4.2)
reX
Combining (4.2.4.1-2) with 3.9.10 we obtain the Riemann-Hurwitz formula 3.6.3, this time for the ana-
lytic genus. As g,,(P}(C)) = 0 = g(P!(C)) (exercise!), letting f : X — P1(C)) be any non-constant
meromorphic function, the comparison of the two Riemann-Hurwitz formulas shows that

Jan(X) = g(X). (4.2.4.3)

In particular,

if g(X)=1, then (Vwe QYX)-{0}) div(w)=0, (4.2.4.4)

as div(w) is an effective divisor of degree 0.
For X = E(C), we have verified (4.2.4.1,3,4) explicitly.

(4.2.5) Hyperelliptic curves. Let f(z) € Clz] be a polynomial of even degree deg(f) = 2m > 4 with
distinct roots. As in 3.7.8, put g(u) = u*™ f(1/u) € Clu] and consider the smooth affine plane curves over
C

Viy?— f(x) =0, W:v? —g(u) =0

and the isomorphism

u=1/z, v=y/z™, x=1/u, y=v/u™ (4.2.5.1)

between VN{z # 0} = V {P+,P Yand Wn{u #0} =W —{04,0_}, where Py = (x,y) = (0, £+/f

O+ = (u,v) = (0,£+/9(0)) (we have O1 # O_, but the points P, P_ are not necessarily dlStlnCt). Gluemg
together V(C) and W(C) along their open subsets V(C) — {P4, P_}, W(C) — {O4, O_} using the formulas
(4.2.5.1), we obtain a Riemann surface X (cf. 4.2.6(i)). In fact, X = U(C), where U is the curve from 3.7.8.

(4.2.6) Exercise. Let p: X — P1(C) be the map

p(z,y) = (z: 1), (x,y) € V(C); p(u,v) = (1:uw), (u,v) € W(C).

Show that
(i) The natural topology on X is Hausdorff.
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(ii) X is connected (draw a picture! — see [Ki], 1.2.3).

(iii) p is a proper holomorphic map of degree deg(p) = 2.

(iv) X is compact.

(v) The ramification points of p are (z,y) = (z;,0), where z1, ..., %2y € C are the (distinct) roots of f(x).

(4.2.7) Tt follows from 4.2.6 and 3.6.5 that g(X) = m — 1. The same calculation as in the first half of the
proof of Proposition 4.2.2 shows that the meromorphic differential

d 2d
= _x = /y 6 QIlneI‘
( Iz

is holomorphic on V(C) and has no zeros there. Similarly, du/v is holomorphic on W(C) and has no zeros
there. The formulas (4.2.5.1) imply that, for each k € Z,

(X)

k ok dx um k=2 dy
riw = =— ;
Y v

hence

div(zFw) = k(Py) + k(P_) + (m —k —2)(0O4) + (m — k —2)(0_), deg(div(z*w)) = 2m — 4 = 2¢9(X) — 2,
as

div(z) = (Py) + (P-) — (04) — (O-), div(u) = —div(z).
It follows that
z* dx
)
in fact, the differentials (4.2.7.1) form a basis of Q!(X), as dimc(Q2'(X)) = g(X) = m — 1. This is why they
appeared in (2.2.7.5)!
In the special case m = 2 (<= deg(f) = 4), we obtain that div(w) = 0, verifying (4.2.4.4) explicitly.
The proof of 4.2.3 then yields directly Q'(X) = C - w, without using the general theory invoked in 4.2.4.

eNX) <= 0<k<m—2; (4.2.7.1)

(4.2.8) Exercise. Let V : f(z,y) = 0 be a smooth affine plane curve over C of degree deg(f) = d > 1
such that its projectivization V : F(X,Y,Z) = Zf(X/Z,Y/Z) = 0 C P? intersects the line at infinity
at d distinct points V(C)N{Z = 0} = {P1,...,P;}. Show that V is smooth and that the divisor of the

meromorphic differential
_dx dy

w=-—=——¢eQL _(V(C))-{0
oo (V(C)) - {0}
is equal to
d
div(w) = (d—=3)Y_(F)),

j=1
hence the genus of V(C) is equal to
(d—1)(d—-2)

g(V(C)) = 1+ div(w)/2 = 5

Deduce that the differentials

giylw  (0<id,j;i+j<d—3)

form a basis of Q}(V(C)), hence
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QNV(C)) = {h(z,y)w| h(z,y) € Clz,y], deg(h) < d — 3}.

4.3 Topology of E(C)

(4.3.1) We know from 4.1.3 that E(C) is a compact oriented surface of genus ¢ = 1. This implies
that the fundamental group m(E(C),0) is abelian, naturally isomorphic to the first homology group
H,(E(C),Z) =~ Z2. Choose a Z-basis [y1],[12] of H1(E(C),Z) = Z[v1] ® Z[Y2] and put

wj:/ weC (1=1,2).
(]
The group of periods of w on E(C) is then equal to
L= {/ w|v a closed path on F(C)} = Zw; + Zws C C.
2l

(4.3.2) Proposition. L is a lattice in C, i.e. the periods wi,ws € C are linearly independent over R. More
precisely, if [y1], [y2] are represented by closed paths 1, v2 based at O, disjoint outside O, with tangent vectors
to v2,71 (in this order) forming a positively oriented basis of the tangent space at O, then Im(w;ws) > 0.

Proof. Cutting E(C) along the paths -1, 72, we obtain a simply connected domain D. For P € D, define
f(p) = fg w, where the integral is taken along (any) path in D. This defines a holomorphic function
f € O(D) satisfying df = w. As

d(fo)=df N\w+ fdo=w A
in D, Stokes’ theorem yields

3/' wAT =~ | fa@. (4.3.2.1)
2 Jec) 2 Jop

As the values of f(P) on two points of 9D corresponding to the same point of v; (resp. v2) differ by wsy
(resp. by wy), the integral (4.3.2.1) is equal to

7
5 (wlwg — wlwg) = Im(wlwg).

(see ([Gr-Hal, Sect. 2.2; [MK], 3.9) for a more general calculation). Proposition follows, as (4.3.2.1) is
positive by (3.5.4.1)

(4.3.3) Corollary. The quotient C/L is a compact Riemann surface and the canonical projection C —
C/L is an unramified covering.

(4.3.4) Attentive readers will have noticed that the proof of Proposition 4.3.2 works for any non-zero
holomorphic differential ¢ on any compact Riemann surface X of genus 1. However, it follows from the
Riemann-Roch Theorem that every such pair (X, ¢) is isomorphic to (E(C),w), for a suitable cubic polyno-

mial f(x).
4.4 The Abel-Jacobi map

(4.4.1) Asin 0.2.1, one can define the Abel-Jacobi map for E(C) by the formula

P
a: E(C)— C/L, a(P) = /O w (mod L).

This is a holomorphic map satisfying o*(dz) = w and the induced map on homology groups
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a, : H(E(C),Z) — H1(C/L,Z) = L

is an isomorphism, as
{/ dz |~ a closed path on C/L} = L.
~

Above, the canonical identification of L and the first homology group of C/L is defined as follows: one
associates to each u € L the homology class of the projection to C/L of any path in C from 0 to u (this is
well-defined, as C is contractible).

(4.4.2) Theorem. The map o : E(C) — C/L is an isomorphism of compact Riemann surfaces.

Proof. By 3.2.3.4 it is sufficient to show that « is bijective. For each P € E(C),

ordp(a®(d(z — a(P)))) = ordp(a™(dz)) = ordp(w) =0,
hence ep = 1, by 3.3.13 (in other words, we use (4.2.4.2) for f = « and w = dz). This implies that « is an
unramified covering, by 3.2.3.5. As the induced map on fundamental groups
7T1(E(C), O) = Hl(E(C)v Z)L)Hl(C/L7 Z) = 7."1((3/L7O)

is an isomorphism, theory of covering spaces implies that « is a bijection, as required.
(4.4.3) The inverse of . The Abel-Jacobi map « is an analogue of the function arcsin (resp. log) from
0.1 (resp. 0.2.3). Its inverse is then a natural generalization of the functions (sin, cos) (resp. exp).
For 2 € C/L—{0}, a=1(z) € E(C)—{O} is given by a pair of holomorphic functions U,V on C/L—{0}:
a™H(z) = (U(2),V(2)) = (z,y).
The relations y? = f(z) and dz/2y = a*(dz) imply that

V(2)? = f(U(2) = U(2)® + aU(2)* + bU(z) + ¢,
U'(2)dz/2V (2) = dz = U'(2) = 2V (2),

hence

U'(2)? =4(U(2) 4+ aU(2)* + U (2) + ¢).

The functions U(z), V(z) are meromorphic on C/L and satisfy

ordg(U(z)) = ordp(z) = -2, ordog(V (z)) = ordo(y) = =3,

by the calculation at the end of the proof of 4.2.2.

U(z) and V (z) are prototypical examples of elliptic functions, i.e. doubly periodic (with respect to wy
and wg) meromorphic functions on C. It would be interesting to have a more direct construction of these
functions. This will be (among others) the subject matter of the next three sections.

(4.4.4) Tt follows from (4.2.4.4) that the discussion in 4.4.1 and the proof of Theorem 4.4.2 apply to any
compact Riemann surface X of genus 1 and any non-zero holomorphic differential w € Q'(X) — {0} (in
particular, to X and w from 4.2.7 for m = 2).
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5. Elliptic functions (general theory)
5.1 Basic facts

Throughout Section 5, L C C is a lattice, i.e. an additive subgroup of the form L = Zw; + Zws, where
w1, ws € C are linearly independent over R.

(5.1.1) Change of basis. We have L = Zw] + Zw)}, if and only if
W) = aw; + bw a b
Lo ( € GLy(Z).
Wy = cwiy + dwa, c d

Recall that GL,(R) denotes, for every commutative ring R, the group of those invertible n X n matrices
with coefficients in R whose inverse also has entries in R (i.e. whose determinant is invertible in R).

We often consider only positively oriented bases wy,ws, i.e. those for which Im(w;/w2) > 0. In that
case the new basis w], wj is positively oriented if and only if

a b
( d) € {g € GLy(Z)|det(g) > 0} = SLo(Z).

c

(5.1.2) A function F : C — C (resp. — P1(Q)) is called L-periodic if it factors as

F:c2.c/L—L-C  (tesp. —L-P(C)),
ie. if
F(z+u)=F(z) (z€C,uel).
As the projection pr is an unramified covering, F' is holomorphic (resp. meromorphic) if and only f is.

(5.1.3) Definition. An elliptic function (with respect to L) is a meromorphic function f € M(C/L)
(equivalently, an L-periodic meromorphic function F = f o pr € M(C)).

(5.1.4) Lemma. A holomorphic elliptic function is constant.

Proof. C/L is a compact Riemann surface.

(5.1.5) Our goal is to describe explicitly all elliptic functions with respect to L. We begin by investigating
their divisors.

5.2 Divisors of elliptic functions
(5.2.1) Proposition. Let f € M(C/L) —{0}. Then

D ordy(f)=0€Z

z€C/L

Z ord,(f)-z=0€ C/L

z€C/L

(in the second statement, the sum is taken with respect to the addition on C/L).

Proof. Compute the integral of f'(z)/f(z)dz (resp. of zf'(2)/f(z)dz) over the boundary dD of a funda-
mental parallelogram D = {z = a + t1w1 + tows |0 < t1,t9 < 1} for the action of L on C (for a € C chosen
in such a way that f(z) has no zeros nor poles on 9D). See ([La], Ch.1, Thm. 2,3; [Si 1], Ch. VI, Thm. 2.2)
for more details.

(5.2.2) This result can be reformulated as follows: the group of principal divisors P(C/L) € Div?(C/L) is
contained in the kernel of the “sum” homomorphism
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B : Div(C/L) — C/L, > ni(P) Y n,P (5.2.2.1)

(where the second sum is the addition on C/L). In other words, B induces a homomorphism (surjective)

B:ci°(c/L) — C/L. (5.2.2.2)
The next step is to show that the conditions in 5.2.1 characterize divisors of elliptic functions, i.e. that
(5.2.2.2) is an isomorphism generalizing the isomorphisms from 3.9.13(ii) and 3.9.14.

5.3 Construction of elliptic functions (Jacobi’s method)

(5.3.1) Change of variables. It is often useful to normalize the lattice L and the torus C/L by the
following changes of variables (isomorphisms of compact Riemann surfaces):
C/(Zw, + Zws) ~ C/(Z1 + Z), Z— 2/we (5.3.1.1)

(where 7 = w1 /wa, Im(7) > 0) and

C/(ZT +Z) = C* /4%, 2 t = 2T (q=e*™7,0< |q| < 1). (5.3.1.2)

In other words, we get rid of the period 1 by applying the exponential map

c}/zi}c}*7 Z’_>627Tiz,
which replaces the additive periodicity with respect to 7 by the multiplicative periodicity with respect to q.

(5.3.2) Multiplicative periodicity. In terms of the multiplicative variable ¢ = exp(27iz), an elliptic
function f € M(C*/q?%) is the same thing as a meromorphic function f € M(C*) satisfying

flat) = £t (teC, lal <1). (5.3.2.1)

A natural attempt to construct such a function would be to consider the following infinite product:

t)=[] 9(a"t) (5.3.2.2)

nez

for a suitable function g(t). Taking the simplest choice of g(¢) = 1 — ¢ (which has a simple zero at the origin
t = 1 of the multiplicative group C*), we see that the two parts of the infinite product

[Ta-g¢=]]a-qt) [[Q-q") (5.3.2.3)
neZz n>0 n<0
have a completely different behaviour: as »° -, |¢"| < oo, the product over n > 0 is convergent, but the
terms of the product over n < 0 have absolute values tending to infinity (since [¢7!| > 1).
This means that we have to modify the terms corresponding to n < 0 in (5.3.2.3) to ensure the conver-
gence. A natural guess would be to replace (1 — ¢"t) by (1 — ¢~"t~1), i.e. to consider the function

oo
(1—1t) H 1—q"t)(1—q"t™h) (te C*, |q| < 1). (5.3.2.4)

(5.3.3) Proposition. (i) The infinite product (5.3.2.4) is uniformly convergent on compact subsets of C*
to a holomorphic function a(t) € O(C*).
(ii) The function a(t) has simple zeros at the points t = ¢"r (n € Z) and no other zeros in C*.

(iii) a(qt) =1 —t1)/(1 —t)a(t) = -t a(t) (t e C*).

Proof. (i),(ii) This follows from the convergence of > |¢|™, by ([Ru 2], Thm. 15.6). The formula in (iii) is
proved by a direct calculation.
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(5.3.4) Back to the additive variables. Rewriting a(t) in terms of the additive variable z € C, we
define

A(z) = a(e*™).
By 5.3.3, A(z) is a holomorphic function on C with simple zeros at the points of the lattice z € Z7 +Z (and
no other zeros) satisfyng
A(z+1) = A(z)

Az +7) = —e 2™ A(2). (5.3.4.1)

Using these properties of A(z) we are now ready to prove the promised converse of 5.2.1.

(5.3.5) Proposition. Let L C C be a lattice and D = 3, n;(P;) € Div(C/L) a divisor satisfying 3 n; =
0€Zand) njP;=0¢cC/L. Then D = div(f) for some meromorph1c function f € M(C/L) — {0} (f is
determined up to mu1t1pl1cat1on by a constant, by 3.9.4).

Proof. Applying (5.3.1.1), we can assume that L = Z7 + Z, Im(7) > 0. Writing D = ) ((P;) — (Q,)) with
> P; =3 Qj € C/L (where the points P;,Q; € C/L are not necessarily distinct), there exist representatives
a; (resp. b;) of P; (resp. Q;) in C such that > a; = > b; € C. Define

z—aj

A(z — b))

This is a meromorphic function on C satisfying F(z +1) = F(z) and

F(z+7) A(z—a;+71) A(z—10y) )
= = —2mi((z — a;) — (z — b;))) = 1
F(Z) E[ A(Z _ a]) A(Z . bg 4 T) ]}Iexp( 7T’L((Z a‘]) (Z ]))) )
since > a; = Y b;. This means that F' is L-periodic, F' = f o pr for some f € M(C/L). As each term
Az — aj)
A(Z — bj)
has simple zeros (resp. simple poles) at the points a; + L (resp. b; + L), the divisor of f is equal to
> ((pr(a;)) — (pr(b;))) = 22((F;) — (Q;)) = D

(5.3.6) Theorem. The homomorphism B : Div(C/L) — C/L defined in (5.2.2.1) induces an isomorphism
of abelian groups
ci°(c/L) = /L,

with inverse given by the map
a — the class of (a) — (0).

Proof. Combine 5.2.1 and 5.3.5.
(5.3.7) One can deduce from this isomorphism all function theory on the torus C/L.
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6. Theta functions

We shall only scratch the surface of the enormously rich theory of theta functions, which is treated in great
detail in [Mu TH] (and also in [Web], [Mu AV], Ch. 1; [MK]; [Gr-Ha], 2.6, [Wei 1] and [Fa-Kr 2]).

6.1 What is a theta function?

(6.1.1) Definition. A theta function (with respect to a lattice L C C) is a holomorphic function F(z) €
O(C) satistying the functional equations

F(z +u) = 2= p(3) (z€C, uelL) (6.1.1.1)
(for some constants a(u),b(u) € C depending on u € L).

(6.1.2) Tt is sufficient to check the condition (6.1.1.1) for u belonging to a set of generators of L. This
means that a theta function with respect to L = Zw; + Zw, is characterized by the functional equations

F(Z + UJl) — ea1z+b1F(Z)

6.1.2.1
F(z 4+ wy) = e®* b2 (), ( )

where a1, as,b1,bo € C. Jacobi’s method of constructing elliptic functions (with respect to L) consists in
taking a quotient Fi/F» of two non-zero solutions of (6.1.2.1).

(6.1.3) Example: If L =Z7 +Z, g = exp(2mit) and t = exp(2miz), then the function

o
Q- JJa-qta—qth)
n=1

from 5.3.4 is a theta function (with respect to L).
(6.1.4) Question. What is a theta function? It is certainly not a function on C/L (unless it is constant).

(6.1.5) Answer. Theta functions are sections of line bundles on C/L.
6.2 A digression on line bundles

Line bundles on Riemann surfaces are discussed in ([Fol, Sect. 29, 30); general theory of vector bundles over
complex manifolds is treated in [Gr-Ha]. We follow closely (a small part of) [Mu AV], Ch. 1.

(6.2.1) Definition. Let X be a complex manifold (e.g. a Riemann surface). A (holomorphic) line
bundle over X is a complex manifold £ equipped with a surjective holomorphic map p : £ — X such
that:

(i) The fibre %, = p~(x) over each x € X is a vector space over C of dimension 1.

(ii) & is locally isomorphic to the product X x C in the following sense: there exists an open covering {U, }
of X and holomorphic isomorphisms fo, : p~1(Us) — U, x C which make the diagram

p_l(Ua) — Uy xC
Ik [
UO( _ UO(
commutative and induce linear maps on the fibres over each x € U, (above, pr denotes the projection on
the first factor). A (holomorphic) section of .Z is a holomorphic map s : X — £ such that po s = id.
The set T'(X,.%) of holomorphic sections of £ is a module over O(X). An isomorphism between £ and
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another (holomorphic) line bundle p' : ¥’ — X is a holomorphic isomorphism f : ¥ — &' satisfying
p' o f = p, which is linear on each fibre p~1(x) (v € X).

(6.2.2) More generally, if we replace C in 6.2.1(ii) by CV (and 1 in 6.2.1(i) by N), we obtain the definition
of a (holomorphic) vector bundle of rank N over X. Line bundles are much easier to study then vector
bundles of rank N > 1; the main reason being that the group of automorphisms of the fibre GL;(C) = C*
is abelian.

(6.2.3) Examples: (1) The trivial line bundle is the product pr : X x C — X. There is a canonical
isomorphism

O(X) = T(X,X x C), f=s(z) = (z, f(z)).

(2) If p: %2 — X is a (holomorphic) line bundle and f : Y — X is a holomorphic map (where Y is
another complex manifold), then the pull-back of .Z via f

L ={,0) eY xZ|f(y) =pl)}

with the map ¢(y,£) = y is a (holomorphic) line bundle over Y.
(3) By definition of the projective space,

PY(C) ={V c C""' | dim(V) = 1}.
The tautological line bundle over PV (C) is

L ={(v,V) e CN T xPN(C)|lveV}

together with the map p(v,V) =V.

(6.2.4) The basic setup. Assume that Y is a complex manifold, G a group acting on Y by holomorphic
automorphisms and that the action of each g € G — {e} has no fixed points (i.e. gy # y for all y € ).

We are going to construct line bundles on the quotient X = G\Y from lifts of the G-action from Y to
the trivial line bundle Y x C. The reader should keep in mind the following two examples:

(A) Y =C, G =L (alattice acting by translations), X = C/L.
(B) Y =CN*l {0}, G = C* (acting by multiplication), X = PY(C) (N > 1).
(6.2.5) Lifted action. In order to lift the G-action from Y to the trivial line bundle ¥ x C we must

construct, for each ¢ € G, a holomorphic map g : Y x C — Y x C which makes the following diagram
commutative:

Y xC g Y xC
lpr lpr (6.2.5.1)
Y g Y,

acts on each fiber {y} x C by a linear automorphism and such that

9192 = G192 (91,92 € G). (6.2.5.2)

In concrete terms, the linearity on the fibers amounts to

9y, t) = (9y, a4(y) 1), (yeY, teC) (6.2.5.3)

where a4 : Y — C* is an invertible holomorphic function on Y. The identity (6.2.5.2) is then equivalent to

Qg1g2(Y) = g, (92()) g, (y)- (6.2.5.4)

Conversely, if ay : Y — C* is a set of holomorphic functions satisfying the identity (6.2.5.4), then (6.2.5.3)
defines the lift of the G-action from ¥ to Y x C.
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(6.2.6) A remark for Bourbakists (only). The identity (6.2.5.4) is, essentialy, a 1-cocycle identity for
the G-action on the group O(Y)* of invertible holomorphic functions on Y. Note, however, that G acts
on O(Y)* on the right (by « * g(y) = a(gy)), since we have started with a left G-action on Y. It is more
customary to let G act on Y on the right, which then leads to the “usual” 1-cocycle relation for a left G-
action on O(Y)*. Of course, if the group G is abelian (which is the case in the two examples 6.2.4(A),(B)),
there is no difference between left and right actions.

(6.2.7) Example: If, for each g € G, oy(y) = a4 is a constant function, then (6.2.5.4) says that the map
p:G—C", p(g9) = ay

is a group homomorphism. Using this observation, we can define for each integer d € Z a lifted action in
Example 6.2.4(B) by the formula

9y, t) = (9y,9"t). (6.2.7.1)

(6.2.8) Definition of .#. Given the lifted action as in 6.2.5, the commutativity of the diagram (6.2.5.1)
implies that the projection pr induces a map between the quotient spaces

p:Z=G\(Y xC)— G\Y =X, p(@(y, 1)) = m(y).

where

7Y — G\Y, T:Y xC— G\(Y xC)

denote the canonical projections. In the generality we are considering, . and G are merely topological
spaces (equipped with the quotient topology) and p is a continuous map. However, the fact that G acts on
Y without fixed points implies that

Ty, t1) =Ty, ta) <= t1 = ta, (6.2.8.1)

hence each fibre p~!(w(y)) consists of the distincts points 7(y,t) (t € C). Moreover, the structure of the
complex vector space on p~1(w(y)) (using the coordinate t) depends only on 7(y) (as each g acts linearly on
the fibers of pr).

(6.2.9) Sections of ¥. Disregarding for the moment the question of holomorphic structure, we want
to describe set-theoretical sections of p : £ — X, i.e. maps s : X — & satisfying pos = id. The
commutative diagram

Y xC T, G\(Y xC)
[ K
Y N G\Y
together with (6.2.8.1) imply that that there is a uniquely determined function ' : Y — C such that

som(y) =7(y, F(y)) (Vy €Y). (6.2.9.1)

For which functions F' does (6.2.9.1) define a (set-theoretical) section s of .#? The necessary and sufficient
condition is that the R.H.S. of (6.2.9.1) should depend only on 7 (y), i.e.

T(g9y, F(gy)) = 7(y, F(y)) (Vy €Y, Vg € G),

which is equivalent to

m(gy, F(gy)) = 7(y, F'(y)) = 7(g(y, F(y))) = 7(gy, ag(y) F(y)),
hence, by (6.2.8.1), to
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F(gy) = a4(y) F(y) (Vy €Y, Vg € G). (6.2.9.2)

Note the similarity to the functional equation (6.1.1.1) of theta functions!

(6.2.10) In good circumstances, both X and . are complex manifolds, p : ¥ — X is a line bundle and
the description (6.2.9.1-2) of the sections of . also holds in the holomorphic category, inducing a bijection
between

(X, %) — {F € O(Y) | F satisfies (6.2.9.2)}.

The line bundles . on X obtained by this construction are not completely arbitrary: by definition, their
pull-backs to Y are trivial, 7*(.%) =Y x C.

(6.2.11) Exercise. Show that such “good circumstances” occur in the situation of 3.2.1.6 (in particular,
in Example 6.2.4(A)).

(6.2.12) Example: In the situation of 6.2.4(B), I'(X,.Z) is isomorphic to the complex vector space of
holomorphic functions

F:CcNt_ 10} — C, F(gy) = ¢ F(y) (Vg € C*). (6.2.12.1)

(6.2.13) Exercise. Show that the space (6.2.12.1) consists of all homogeneous polynomials of degree d
(resp. is trivial) if d > 0 (resp. if d < 0). Show that the case d = —1 corresponds to the tautological line
bundle from 6.2.3(3).

(6.2.14) Equivalent lifts. We obtain isomorphic objects if we reparametrize the trivial line bundle
Y x C — Y (linearly along the fibers), i.e. by a holomorphic isomorphism (a “gauge transformation”)

7Y xC-5Y xC, (y,t) = (y, By) 1),

where 3 : Y — C* is an invertible holomorphic function. This leads to a new lift gV of the G-action,
given by the commutative diagram

~

YyxC -2 YxC

[ |

-~
new

YyxCc 2 vxCcC.

Inother words,

(9y, ™ (y) B(y) t) = g"" (r(y, 1)) = r(G(y, 1) = r(9y, ag(y) t) = (9y, B(gy) ag(y) 1),

which is equivalent to

anv(y) = 29 o () (e, g€ q) (6.2.14.1)

g B(y)
In other words, a;" and «, differ by a 1-coboundary.
Under this reparametrization, . does not change, but the projection map 7 : Y x C — £ is replaced
—~new

by 7% satisfying 7"V o r = 7. Similarly, the description of the sections (6.2.9.1-2) of .Z still holds, if we
replace F(y) by

F*(y) = By) F(y). (6.2.14.2)

(6.2.15) Tensor products. All standard constructions of linear algebra can be applied to vector bundles.
In particular, given two (holomorphic) line bundles .2, %’ on X, one can form new line bundles .¥ ® %’
and £~ (the dual of .&).
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We do not give here the definition in the general case, only for £ constructed as in 6.2.8: if £ (resp.
") is constructed from the functions {ay(y)} (resp. {c(y)}) satisfying (6.2.5.4), then £ ® 2" (resp. £~ 1)
is defined using {oy(y)a, (y)} (vesp. {ay(y)~'}). In particular, there is a product

Nx, £)ecl(X, %) —-T(X, 202,

defined as follows: if s € I'(X,.Z) (resp. s’ € I'(X,£")) corresponds to a function F : ¥ — C (resp.
F':Y — C) satisfying (6.2.9.2) (resp. its analogue with o} (y) instead of ay(y)), then the tensor product
s ® s’ corresponds to the function F(y)F’(y).

(6.2.16) Exercise. Let . be a line bundle on a compact Riemann surface X. If both ¥ and £~ have a
non-zero holomorphic section, then £ is (isomorphic to) the trivial line bundle. [This gives a quick proof of
the case d < 0 in 6.2.15.]

6.3 Theta functions revisited

(6.3.1) Let us apply the general discussion from 6.2.4-15 to the objects from Example 6.2.4(A): Y = C,
G = L (alattice in C acting by translations), X = C/L. Following 6.2.5, we need a collection of holomorphic
functions ay,(z) € O(C) (u € L) satisfying

Qyto(2) = ay(z +v) ay(2) (u,v € L, z€ C); (6.3.1.1)

they define an action

U(z,t) = (2 +u, au(2)t) (we L)
on Cx C and — by 6.2.11 — a holomorphic line bundle .¥ = L\(C x C) over X. The sections of .Z correspond
to holomorphic functions F' € O(C) satisfying
F(z+u) = ayu(z) F(z) (ue L, z€C). (6.3.1.2)

If the functions «,(z) are replaced equivalent functions

B(z + u)
B(z)

where 3 : C — C* is an invertible holomorphic function, then the line bundle remains the same.

o (z) =

ay(2), (6.3.1.3)

(6.3.2) Proposition. (i) Every holomorphic line bundle on C/L is obtained by the above construction.
(ii) For every solution {cu,(z)} of (6.3.1.1) there is an equivalent solution (6.3.1.3) of the form

AoV () = (W= Hb(w) (a(u),b(u) € C).
(6.3.3) We are not going to prove 6.3.2 in this course. However, a few comments may be helpful:
(1) The statement (i) is a consequence of the fact that every (holomorphic) line bundle on C is trivial.
(2) In fact, if Y is a non-compact Riemann surface, every (holomorphic) line bundle on Y is trivial ([Fo],
30.3). This applies, in particular, to C and the unit disc A = {z € C||z| < 1}. If X is a Riemann surface
not isomorphic to P1(C), the the universal covering Y of X is isomorphic either to C or to A, and X = G\Y,
where the fundamental group G = 71 (X, z) acts on Y as in 3.2.1.6. This implies that every (holomorphic)
line bundle on X can be obtained by the construction 6.2.8 applied to this particular pair Y, G.

(3) An elegant cohomological proof of the classification of line bundles over n-dimensional complex tori
C"/L can be found in ([Mu AV], Ch. 1). See also [Wei 1] and [MK].

(6.3.4) The integrality condition. Assume that £ is the line bundle on C/L defined by the collection
of functions

o (z) = et W=Fb) (a(u),b(u) € C).
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The associativity condition (6.3.1.1) is then equivalent to

a(u+v) = a(u) + a(v)

6.3.4.1
b(u+v) = b(u) + b(v) + a(u)v (mod 27iZ). ( )
Interchanging v and v in (6.3.4.1), we see that the alternating bilinear form
u v
(u,v) — € 2miZ (u,v € L) (6.3.4.2)
a(u) a(v)

on L has values in 2miZ. Topologists will recognize in this bilinear form the first Chern class of .Z

c1(&) € H*(C/L,2niZ) = Hom(A?H,(C/L, Z),2miZ).

If L = Zw; + Zws, then the relations (6.3.4.1) determine the constants a(u), b(u) (v € L), as long as we know
the values of a(w;),b(w;) € C (j = 1,2), which should satisfy

w1 (%))
€ 2miZ. (6.3.4.3)

a(wr) a(ws)
See ([Mu AV], 1.2) for general formulas for a(u), b(u).

(6.3.5) The simplest line bundle on C/L. Assume that wo = 1, w1 = 7 (Im(7) > 0). After a
reparametrization (6.3.1.3) with 8(z) = exp(Az2 + Bz + C) (for suitable A, B,C € C), we can assume that
a(1) = b(1) = 0. The integrality condition (6.3.4.3) then becomes

T 1
€ 2mil.

Consider the simplest non-trivial value —a(7) = 2mi. The sections of the associated line bundle £ then
correspond to holomorphic functions F' € O(C) satisfying

F(z4+1)=F(2)
F(Z + 7_) _ 6727”"”1’(7)F(z).

Is there a “simplest” choice of the parameter b(7)? After a change of variables by the translation

T.:z—z+c

(which amounts to replacing . by its pull-back T*.Z), the constant b(7) is replaced by b(7) — 2mic. It is
natural to choose ¢ for which F'(z) = F(—z) would be an even holomorphic section; putting z = —7/2 we
obtain b(7) = —mir.
We denote by .Z (until the end of Sect. 6) the line bundle on C/Z7t + Z corresponding to the values
a(l) =b(1) =0, a(t) = —2mi, b(r) = —mit.
A section s € I'(C/Z7 + Z, &) is then given by F(z) € O(C) satisfying
Flz+1)=F(z

(1) (2), . (6.3.5.1)

F(z+7) = e 2mMETRIR(2).

(6.3.6) Proposition (Basic theta function). The space of holomorphic solutions of (6.3.5.1) is equal to

C - 6(z), where
0(2) =0(z7) = Y g /2m = Y emimiraming,

nez neZ
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In other words, T(C/Zt+Z, %) =C-0(z).

Proof. Assume that F € O(C) satisfies (6.3.5.1). The first relation implies that F(z) = f(e?™*) for some
f € O(C*) which can be expanded to a convergent Laurent series

&)= ant" (t = ™).
neZ
The second relation is equivalent to
3 0™ = fat) = (0 = 3 ang A = Y g2
nez nez neZ

(where ¢'/2 = ™), hence to

ans1 = ¢"?a, (neZ) < a,= q”2/2a0 (neZ) < f(t)=ap Z q”2/2t" =ap0(z).
neZ

As |g| < 1, the series defining 6(z) is uniformly convergent for ¢ contained in a compact subset of C*, and
so defines a holomorphic function. Reversing the calculation, we see that 6(z) satisfies (6.3.5.1).

(6.3.7) Further theta functions. For fixed a,b € {0,1} = Z/2Z, denote by x4 : L — L/2L — {£1}
(where L = Z7 + Z) the character
Xap(m +n7) = (=1)meFn (m,n € Z).

By 6.2.7, the constant functions {x,(u)} define a line bundle on C/Z71 + Z, which will also be denoted
by Xa,p- For each m € Z, a section s € I'(C/Z7 + Z, £®™ ® Xa,) corresponds to a holomorphic function
F € O(C) satistying
F(z+1)=(-1)*F(z
(1) = )b (2 ) . (6.3.7.1)
F(z+7) = (=1)le 2mmET2 P ().

We first consider the case m = 1.

(6.3.8) Proposition. For m =1 and a,b € {0, 1}, the space of holomorphic solutions of (6.3.7.1) is equal
to C - 04p(2), where

ar +b

).

. a . a b ; TiaT
Qab(z) _ eab(Z;T) _ Z ewz(n+§)27—+27m(n+§)(z+%) — aaO(Z + 5;7_) _ eTrw(er%)Jr i 000(2 +
nez

In other words, T'(C/ZT+Z, L @ Xap) = C-0a(2). (Of course, Oyo(z) = 6(z).)

Proof. As in 6.3.6.

(6.3.9) Warning about normalizations. Our definition of ,,(z) is the same as in [MK] and [Mu TH]
(except that Mumford uses a/2,b/2 instead of a,b), but the “classical” 611(z) used in [Web] is equal to our
7011(2’).

(6.3.10) Degenerate values. If we let Im(7) tend to +o00 (“7 — i00”), then ¢ = exp(2mir) tends to 0.
The expansions of 6,;,(z; 7) then yield the following asymptotics as 7 — io0:

Ooo(2;7) ~ Oo1(2;7) ~ 1, bro(z;7) ~ (E2 +171/%) /8, O11(z;7) ~ (Y2 —t71/%) g8

(6.3.11) Relation to A(z). The function A(z) from (5.3.4.1) is also a theta function. A short calculation
shows that
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satisfies (6.3.5.1), hence

) (6.3.11.1)

for some ¢(7) € C*, by 6.3.6.

(6.3.12) Proposition. (i) The function 6(z) has simple zeros at z € ZtL + Z7 + Z (and no other zeros).

.. . . (a+1)7+(b+1)
) ) ) [ .
(ii) For a,b € {0,1}, the function 04,(z) has simple zeros at z € 5 +Z7+ Z (and no other zeros)

Proof. For (i), combine 5.3.4 and (6.3.11.1); (ii) then follows from the formulas relating ,,(z) and 6(z).

(6.3.13) Exercise. Using only the functional equation (6.3.5.1) of 6(z), show that

!/ /
i' H(z)dzl, 1 G(Z)dzeT—i—l
27t Jop 0(2)

— Z Z
2mi aDZ 9(2’) 2 tAT+ ’

where the integral is taken over the boundary of a fundamental parallelogram D = {z = a + t17 + t21]0 <
t1,ta < 1} for the action of Zt + Z on C. [This calculation gives another proof of 6.3.12(i).]

(6.3.14) General line bundles on C/L. Is it possible to classify all line bundles (up to isomorphism) on
C/Z7+Z? The discussion in 6.3.5 implies that each line bundle .#” is defined, after a suitable reparametriza-
tion, by the functions

a(z) =1,  ar(z) =e 2mimlti+e) (m € Z,ceC), (6.3.14.1)

with oy, (z) for general u € Z7 + Z defined by the associativity relation (6.3.1.1). In other words, £’ is
isomorphic to (TF.2)®™, where T.(z) = z+c is the translation by ¢ € C (for example, I'(C/Z7+Z, T*.¥) =
C-0(z+c)).

(6.3.15) Line bundles and divisors. If ¢,d € C satisfy m(c —d) € Z7 + Z, then the functions (6.3.14.1)
differ by a reparametrization (6.3.1.3) (exercise!). This means that the isomorphism class of (77.£)®™
depends on two invariants: an integer and an element of C/Z7 + Z, which is strongly reminiscent of the
description of the divisor class group given in 5.3.6:

0— C/Zr +Z — CI(C/Zr + Z)- 5.7 — 0.

This is no accident; in fact, there is a direct correspondence between (isomorphism classes of) line bundles
on an arbitrary Riemann surface X and divisor classes on X, given as follows. First of all, one can define
meromorphic sections of a line bundle .Z over X. For example, in the situation of 6.3.3(2), such a section
corresponds to a meromorphic function F(y) satisfying 6.2.9.2. The zeros and poles (including multiplicities)
of such a (non-zero) meromorphic section s are invariant under the action of G, hence come from a divisor
div(s) € Div(X). Non-zero meromorphic sections of . always exist, and form a one-dimensional vector
space over M(X) (by the same argument as in 3.3.16). If ' = fs is another meromorphic section of ¥
(with f € M(X) —{0}), then div(s") = div(s) + div(f); thus the class of the divisor div(s) does not depend
on the choice of s. Associating to .Z the class of div(s) then defines a homomorphism of abelian groups

{isomorphism classes of line bundles on X} — CI(X), (6.3.15.1)

with tensor product as the group operation on the left hand side. In fact, (6.3.15.1) is always an isomorphism
(both sides being trivial if X is not compact). With an appropriate notion of a divisor, all of the above holds
for (smooth) complex varieties of any dimension embeddable into P (C); see [Gr-Ha], 1.2.
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6.4 Relations between theta functions

Theta functions satisfy a large number of interesting identities (see [Web], [Mu TH], [McK-Mo)); a few of
them will be proved in this section (following closely [Web]).

(6.4.1) The basic principle is very simple: in general, the tensor products

I(C/ZT + Z, L®™ @ Xap) ®c T'(C/ZT + Z, L%" @ Xc,a) — T(C/ZT + Zy LE™ ™ @ Xatebrd)
have non-trivial kernels, which yield non-trivial linear relations between products of theta functions. The
existence of such relations can be often established by a simple count of dimensions.

(6.4.2) Exercise. The four functions 0,,(z) are linearly independent over C. [Hint: The characters of
L/2L are linearly independent.]

(6.4.3) Proposition. For m € Z and a,b € {0,1},

m, ifm >0
dimc ['(C/Z7 + Z, L®™ @ Xap) =
0, ifm < 0.
Proof. (Sketch) If m > 0, expand a holomorphic solution of (6.3.7.1) into a Laurent series ) ., ant™te/?

the functional equation yields recursive relations between a, and a4, (n € Z), which leaves the values

of ag,...,a,—1 undetermined. Conversely, any choice of these first m coefficients defines a holomorphic
solution. If m < 0, we obtain again recursive relations between a, and a,..,, but every non-zero choice of
(agy.-.,am—1) leads to a divergent series (alternatively, one can also appeal to 6.2.16)).

(6.4.4) Examples: (1) The four functions 62, (z) all lie in the two-dimensional space I'(C/Z7 + Z, £%?).
In fact, it follows from 6.4.2 that they generate this space. As a result, there exist two linearly independent
linear relations between 03,(2), 03, (2), 0%,(2), 0%, (2).

(2) The four functions 6,,(2z) all lie in the four-dimensional space I'(C/Z7 + Z, £®*); by 6.4.2 they form
its basis. By 6.3.12, these functions have no common zeros, hence the map

f:C/Zr +Z — P?*(C), 2+ (000(22) : 001(22) : 019(22) : 011(22))

is well-defined. By (1), the image of f is contained in the intersection of two quadrics @1 (C)NQ2(C) C P3(C),
where

Q1:aoXE+ a1 X? 4+ ay X2 +a3X32 =0, Qo : boXZ + b1 X2 + b X3 + b3 X2 = 0.

(6.4.5) Exercise. (i) Write down explicitly two relations from 6.4.4(1).
(ii) For a,b,c,d € {0,1}, express the values Hab(“;d) in terms of 6 qc)(b+d)-
(iii) Deduce that 05, = 03, + 0%,.

(iv) Show that f: C/Zt +7Z — Q1(C) N Q=2(C) is a bijection ([McK-Mo], 3.4).

(6.4.6) Notation. For n > 0 and a,b € {0, 1}, we shall denote

n a\" n o\"
egb><z>:(£) 0ab(2),  Oup = 0(0;7), ag;:(&) O (2;7)

(6.4.7) Exercise. Show that

2=0

1, if ab = 00,01, 10

Gab(—z) = Gab(z) .
—1, if ab=11.
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(6.4.8) Exercise. Show that, for a,b,c,d € {0,1},

Oup(2)  0L4(2)

F(C/ZT + Z7 °g®2 & Xa+c7b+d>'
Gab(z) ch(z)

(6.4.9) Corollary. We have
011(2)  601(2)

911(2) 901(2)

Proof. The function f(z) (resp. g(z)) on the left (resp. right) hand side is even (by 6.4.7) and lies in

!
0
11901
= ——"0po(2) O19(2).
Bo0010 00(2) 610(2)

P(C/ZT =+ Z, $®2 X leo) = C . 900(2) 910(2) P C . 011(2’) 901(2’).

As the function 611(z) 6p1(2) is odd, we must have f(z) = Ag(z) for some A\ = A(7) € C*; the exact value of
A is obtained by putting z = 0 (and using 61; = 0).

(6.4.10) Proposition. There exists ¢ € C* such that

011 = cboo 001 b10-

Proof. Applying (9/0z)? to the identity in 6.4.9 and putting z = 0, we obtain

/
011 00 — 00 0y = 1000 (g g 0 010,
000610

hence

" " " /1
011 _ 001 910 900

0, 6o 60 boo

Using Lemma 6.4.11 below, this can be rewritten as

0 0
. los( 1) = 5. 108(001 010 00o),
proving the claim.

(6.4.11) Lemma (Heat equation). For a,b € {0,1},
(D§ —47miD;) Oap(2;7) =0

(where D, = 0/0z, D, = 0/0T).

1 ™ — mqg™ 1 M0
7-DT : 1 -~ 1 ) 7.Dz : ¢ )
27 t"™ 0 2mi t" = mt™

the operator 1/2mi D, — 1(1/2mi D,)? annihilates each term of the series

Bap(z;7) = Y TV Dt 9 /2t
neZ

Proof. As

(6.4.12) We are now ready to evaluate the factor ¢(7) in (6.3.11.1):
oo
900 Z T _ C H 1 +qn 1/2t +qn71/2t71) (t — e?frzz7 qa _ 62772047).
n=1
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It follows from 6.3.8 that

Oo1(2;7) = (T H Y2 (1 — Y2

Oro(z7) = (112 +712) ¢ e(r) [T+ "1 + ") (6.4.12.1)
n=1

Ora(z7) = (82 = t71%) ¢ oe(r) [T (L = g") (1 = g7,
n=1

Letting z — 0 (when ¢t ~ 1 + 27iz), we obtain

Ooo = c(7) [[(1+q"7/%)?
n=1
01 = C(T) H(l _ qn—1/2)2
=t (6.4.12.2)
b0 = 2c(1) ¢"/® H 144"
0, = —2me(r q/8 H
The identity 67, = c6pp o1 010 from 6.4.10 implies that
1 _ 2n—1\2 1— 2n\2 .
=27 (T 1/8H 1—q¢")=c-2¢(7)3 1/81_[ 4 1_)q51)2 ) :0'20(7)3q1/8,
hence
e(t)? = (—7/e) H 1—-¢")
Letting Im(7) — oo (when ¢ — 0) and using 6.3.10, we see that ¢(7) — 1. This implies that
c=—m, =[[a-q (6.4.12.3)
n=1

We have thus proved
(6.4.13) Proposition. 0, = —7m 0o o1 010 (cf. 6.3.9).
(6.4.14) Theorem (Jacobi’s Triple Product Formula).

)

2
§ qn /Qtn — H(l _ qn)(l +q71—1/2t)(1 + qn—1/2t—1).
nez n=1

(6.4.15) Exercise (Another proof of Jacobi’s Triple Product Formula). Substituting to the product

formula (6.3.11.1) the values 7 = 1, % and using the fact that 6(4z, 3) = 6(z, 1), deduce that the holomorphic

function ¢(7)/ ][, (1 = ¢") (Im(7) > 0) is invariant under 7 — 47 and 7+ 7 + 2, hence constant.

(6.4.16) Proposition.

o0 oo

H(l —q")? = Z(fl)"(Qn +1) "2 =1 — 3¢+ 5¢% - 7¢° +9¢*° —11¢° + - -

n=1 n=0
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Proof. This follows from the expansion

01, = =27 q1/8 Z(n + 1/2)(_1)nqn(n+1)/2 — _9r q1/8 Z(_l)n(2n +1) qn(n+1)/2
nez n—0

and the product formula

0, =—2mg"/* (1 —q"),

n=1

which is obtained by combining (6.4.12.2-3).

7. Construction of elliptic functions (Weierstrass’ method)
7.1 The Weierstrass o, ( and p-functions

Let L C C be a lattice.

(7.1.1) Recall that Jacobi’s method of construction of elliptic functions with respect to L consisted in
taking a quotient

01(2)
92(2)

of two theta functions, i.e. of two solutions of (6.1.1.1). By contrast, Weierstrass showed that the function
U(z) from 4.4.3 (i.e. the inverse of the Abel-Jacobi map) can be written directly as

(2 et

where o(z) is a particular theta function with simple zeros at z € L. Morally,

“o(z) = H (z —w)”, (7.1.1.1)

u€eL

but this infinite product does not converge for any z € C.
An elementary version of o(z) is the function sin(z), which is holomorphic in C and has simple zeros at
z € wZ. The infinite product

9(z) = zﬁ (1 — %) (1 + W—i) = zﬁ (1 — Wj—;) (7.1.1.2)

has the same properties, as the series

;-

29,2
n:ﬂ,ﬂ n
is uniformly convergent on compact subsets of C ([Ru 2], Thm. 15.6). In fact,

g(z) = sin(z).
(7.1.2) Exercise—Definition. For s € R,

11
> TS <00 = 5> (7.1.2.1)



where we have used the notation ,
wel  weL—{0}

In particular, the series

Gar(L) = Z/# (7.1.2.2)

ucL
is absolutely convergent for every integer k > 2.
(7.1.3) Definition of the o-function. The divergence of the sum (7.1.2.1) for s = 1,2 implies that one
cannot work directly with the products
/ z 22
1— —) 1- =
I0-3). IM(-5)
u€L u€ey

where L — {0} =X U -3, ¥ N —X = (). However, the power series expansion

z z  1y/z\2 1 /2\3
71 (177):7 7(7) 7(7) o
ow(1-2) =2 () 1 () + (1l < Jul)
implies (together with 7.1.2) that the infinite product
o(z)=0(z;L) =2 IGIL/ (1 — %) e%"'%(%)z (7.1.3.1)

is uniformly convergent on compact subsets of C and defines a holomorphic function with simple zeros at
z € L and no other zeros ([Ru 2], Thm. 15.6).
As we shall see in 7.4.9 below,

o(z;ZT7+7Z) = 0166222911(2’; T), (7.1.3.2)

for suitable constants ¢; = ¢;(7) € C.

(7.1.4) Definition of the (- and p-functions. The convergence properties of the infinite product (7.1.3.1)
imply that its logarithmic derivative {(z; L) can be computed term by term:

C(zL) = o'(z) - 1 + Z/ ( 1 + l + z ) ) (7.1.4.1)

z—u u u?
ueL

where the infinite series is uniformly convergent on compact subsets of C — L to a holomorphic function; it
is meromorphic on C, with simple poles at all z € L.
The power series expansion

n

1 1 z >z
z—u+ﬂ+$:_zm (2] < lul)

n=2

and the absolute convergence of the double sum

PR Zn
> o

uel n=2
imply that
(D)= - i Gapp2™ ! (7.1.4.2)
5 2 k:il + . B B

Differentiating (7.1.4.1) and using (7.1.4.2), we obtain the function
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(5 L) = —C'( L) = Ziz Ly (ﬁ - ) _ iz + 572k + 1) Gop 22 (7.1.4.3)
k=1

u€L
and its derivative

2 o0
-2y ( ) =5 + ) (2k + 1)2k Gap 22?1 (7.1.4.4)

u€eL k=1

The function p(z) (resp. ©'(z)) is an even (resp. odd) meromorphic function on C, holomorphic on C — L
and having poles of order 2 (resp. 3) at z € L.

(7.1.5) Proposition. Both p(z) and ¢'(z) are elliptic functions with respect to L, ie. p(z),9'(z) €
M(C/L).

Proof. By 7.1.2 (for s = 3), the infinite series (7.1.4.4) for ¢'(z) is absolutely convergent for all z € C — L.
It follows that, for every v € L and z € C — L,

et =Y (i) =2 ¥ () =96

ueL w=u—v

hence

p(z +v) — p(z) = c(v) € C.
Choosing a basis L = Zwy + Zw, of L and putting v = w;, 2 = —w; /2, we obtain

o -0(3) -0 (-4) 0

as g is an even function. Thus both p and ¢’ are L-periodic.
(7.1.6) Rescaling L. It follows from the definitions that, for every A\ € C*,

o(A\z;AL) = \o(z; L), C(A\z; AL) = \71¢(2; L),
d\" d\"
() o0wan =2 () oD Gun) = A 6u(D)
1. aurent expansions at z = 0. e expansions (7.1.4.3-4) imply that
7.1.7) L i 0. Th i 7.1.4.3-4) imply th

1
p(z) = Z—2+3G4z2—|—5G6z4+---

2 (
—¢'(2) = o —6Gyz —20Ge2% 4 -

1
p(2)? = ;+6G4+10G622+~~

4 UG
p/(2)2: ;—2—24—80G6+
1 9G
p(2)° = 5+ 5 +15Gs+ -

(where we write Gay, for Gai(L)). It follows that the elliptic function

f(z) = ¢'(2)* = (4p(2)° — 60 Gap(2) — 140 Gs) € M(C/L)

is holomorphic on C/L — {0} and has Laurent expansion of the form

f(2) =ca2® +cqzt + -

at z = 0; thus f € O(C/L) = C is constant, equal to f(z) = f(0) = 0. We have proved, therefore, the
following result.
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(7.1.8) Theorem. The function p(z) satisfies the differential equation
0'(2)* = 4p(2)" — g20(2) — g3,

where

1 11
u€eL u€L

(7.1.9) Proposition. Fix a basis L = Zw; + Zws of L and put w3 = wy + wo. Then

(i) divip(z) — plw;/2)) = 2(w;/2) — 2(0),

(i) div('(2) = (@1/2) + (w2/2) + (w5/2) — 3(0).

(iii) The cubic polynomial 4X3 — g2 X — g3 = 4(X —e1)(X — e2)(X — e3) has three distinct roots satisfying

{e1,e2,e3} = {p(w1/2), p(w2/2), p(ws/2)}.

Proof. For each j =1,2,3,

—'(w;/2) = o' (~w;/2) = ¢ (—w;/2 + w)) = ¢'(w; /2) = ¢ (w;/2) = 0.

It follows that the function ¢’(z) (resp. p(z) — p(w;/2)) has a zero of order > 1 (resp. > 2) at w;/2 € C/L;
as its only pole is at z = 0 and has order 3 (resp. 2), the statements (i), (ii) follow from the fact that
the degree of a principal divisor is equal to zero. The differential equation 7.1.8 implies that each number
aj = p(w;/2) is a root of 4X3 — go X — g3; these numbers are distinct, since the divisors div(p(z) — a;) are
distinct, proving (iii).

(7.1.10) The discriminant and the j-invariant. Writing
4X% — o X — g3 = 4(X> +aX +b) = 4(X —e1)(X —e2)(X —e3)
with a = —go/4, b = —g3/4, it follows from 7.1.9(iii) that the discriminant
disc(X? 4+ aX +b) = H(ei —e;)? = —4a® — 276> £ 0
i<j
is non-zero. It is customary to get rid of the denominators and define the discriminant of L as
A(L) =16 J(ei — €;)* = 16 (—4(—g2/4)® — 27(—g3/4)*) = g5 — 273 # 0 (7.1.10.1)
i<j
and the j-invariant of L as

Lo (12g2)*  1728¢3
i) ="X0) =A@

(7.1.10.2)
Under rescaling,
AL =A"2A(L), jOL)=3(L) (A e CH).
(7.1.11) Exercise. What are the analogues of 7.1.4-10 if we replace o(z) by sin(z)?
7.2 The elliptic curve FE associated to C/L
(7.2.1) It follows from 7.1.9(iii) that the projective curve

E:Y?Z =4X?% — o2 X 7% — g32° = 4(X — 1 Z)(X — e2Z)(X — e32)

is of the type considered in 4.1.1 (apart from the harmless factor of 4). Using the affine coordinates x =
X/Z,y=Y/Z on
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E—{0}:y* =42® — gyz — g5
(where O = (0:1:0) is the unique point at infinity of E), we define a map

¢:C/L — E(C), (z;«éO)n—>(x,y):(p(z)p’(z)), 0~ 0.

(7.2.2) Theorem. The lattice of periods of the holomorphic differential w = dx/y on E(C) is equal to L
and the map ¢ is a holomorphic isomorphism, inverse to the Abel-Jacobi map

a: E(C)— C/L, a(P) = /o w (mod L).

Proof. The map ¢ is holomorphic on C — {0}; as z (resp. z/y) is a local coordinate at z = 0 (resp. at O)

on C/L (resp. on E(C)) and
Top) =Bz
(y @)() oG 2"

is holomorphic at z = 0, it follows that ¢ is holomorphic everywhere. The composition of ¢ with the
projection p from 4.1.2 is given by

Cc/L—<-E(C)—-P!(C), z 1 p(2).

The only singularity of p(z) is a double pole at z = 0 € C/L; thus deg(po ¢) = 2, by 3.2.3.7. It follows that
deg(p) = deg(p o )/ deg(p) = 2/2 = 1, hence ¢ is a holomorphic isomorphism (by 3.2.3). As z o ¢ = p(2)
and y o ¢ = p/(z), we have

dj) _dolz) _

o) = 9" () = T

/dz:/ w, (7.2.2.1)
gl pory

for any path v in C/L. Letting v in (7.2.2.1) run through a set of representatives of H;(C/L,Z) proves the
equality of the period lattices; taking for v the projection of any path from 0 to z in C shows that

and

- /Ozdz: /:(Z) w (mod L) = a(p(2)).

(0)=0

(7.2.3) Theorem. The field of meromorphic functions on C/L is equal to M(C/L) = C(p(z), ¢'(2)) (i.e. ¢
induces an isomorphism between the field of rational functions C(x,y) = Frac(Clz, y]/(y? — (423 — gox — g3)))

on E and M(C/L)).

Proof. Any elliptic function f € M(C/L) is of the form f = f + f_, where f1(2) = (f(2) £ f(—2))/2. As
both fi(z) and f_(z)/p'(z) are even functions, we can assume that f = f, is even (and non-zero). We are
going to show that, in this case, f € C(p(z)). As the divisor of f is invariant under the map z — —z on
C/L, it follows that

() = 3 () + ()~ 200)) + Y, (%) -m),
k j=1

where ng, m; € Z and ay, # —ay, € C/L. By 5.2.1, we have
3 s
ijgjeLﬁmj:eran (m, n; € Z).
j=1
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This implies that the elliptic function

9(2) = ' (" [T (0(2) = (@)™ [T (02) - 0 (2))" € Clol2), /(=)
k j=1

has the same divisor as f, hence f(z) = cg(z) (¢ € C*) also lies in C(p(z), ©'(z)). More precisely, m € 2Z

has to be even, as f = f., hence f € C(p(2), ¢'(2)?) = C(p(2)).

One could have also argued directly that m; = ordwj/gf(z) is even, by substituting n = 2k —1 and z = w; /2

to the formula f(")(—z) = (=1)"f(™(2).

(7.2.4) The algebraicity statement 7.2.3 is a special case of the following general results proved by Riemann:

(A) Every compact Riemann surface X is isomorphic to C'(C), for some smooth projective irreducible curve
C over C (in general, C is not a smooth plane curve).

(B) Every holomorphic map X; = C1(C) — X3 = C2(C) between compact Riemann surfaces is induced
by a (unique) morphism of algebraic curves C; — C5 (thus the curve C in (A) is unique up to
isomorphism).

(C) The field of meromorphic functions on X = C(C) coincides with the field of rational functions on C
(this follows from (B), if we consider a meromorphic function on X as a holomorphic map X — P(C)).

The nontrivial point is the existence of a non-constant meromorphic function on X; once this is estab-
lished, the statements (A), (B), (C) follow in a relatively straightforward way.
(7.2.5) The analogous statements are false in higher dimensions. For example, if L —— Z2" is a “generic”
lattice in C™ (n > 2), then the n-dimensional complex torus C"/L is not algebraic ([Mu AV], Ch. 1).

(7.2.6) Exercise. Assume that the coefficients g2, g3 € R in the equation of E are real. Show that:
(i) If A(L) > 0, then the roots e;j are all real. Ordering them by ey < e3 < ea, then L = Zw; + Zws, where
dx w1

d
€ R>07 :

2 _/62 2¢/(z —e1)(z — ea)(z — e3) 2_2/33 2y/(z —e1)(ea — z)(z — e3)

(above, the square roots are taken to be non-negative). In particular, Re(w; /w2) = 0.
(ii) IfA(L) <0, then L = Zw; + Zws, where we € Rx and wq — w2/2 € iR~¢ (hence Re(wi/w2) =1/2).

o)

€ iRsg

7.3 Relations between p(z) and 0,,(2)

In this section L = Z7 + Z, where Im(7) > 0. Weput w1 =7, ws =1 (= w3 =7+ 1) and e; = p(w,/2).
(7.3.1) Proposition. In the notation of 6.3.8 and 6.4.6,

o(2) e = 606) —ptr/2) = (A i
)

0(2) —ex = p(2) — p(1/2) = <

foo(2) 9’11>2
z)—e3 =p(z) —p((T+1)/2) = —=
)~ 2 = o0 7+ 1)/2) = (2
Proof. Both functions p(z) —e; and g(z) = 62,(2) /6%, () lie in M(C/L) and have the same divisor div(f) =
div(g) = 2(7/2) — 2(0); thus f(z) = cg(z) for some ¢ € C*. If z — 0 tends to zero, then f(z) ~ 1/22,
0o1(2) ~ 61 and 011(z) ~ 0,2, hence ¢ = (87, /601)?. The other two formulas are proved in the same way.

(7.3.2) Corollary. The function ¢ (z) is equal to

_ o 900(2)001(2)010(2) (61,)°

9 (2)9 (2)91()(2)
/ 2000(2)001
©'(2) 611(2)3 000001010 (

911(2)3 )

= 27(911)

Proof. Multiplying the three identities in 7.3.1 yields a formula for ©’(2)?/4; the correct sign of its square
root ¢’(z)/2 is determined by the asymtotics ¢/(2) ~ —2/2% as z — 0.
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(7.3.3) Proposition. We have

;N2
o= e = (7 + 1)/~ olr/2) = (o) (= w201y)
o= p(r/2) - p(1j2) = (%) (= —n26%y)
e —es = p(1/2) — pl(r +1)/2) = (ZZ) (= 264

Proof. Substitute z = 7/2,1/2, (7 4+ 1)/2 to 7.3.1 and use 6.4.5(ii) (resp. 6.4.13 for the values involving 72).
(7.3.4) Corollary. The functions

B0 = Z an/Q, o1 = Z(_l)nqn2/27 010 = _q1/8 Z qn(7z+1)/2

nez nez nez

satisfy
00 = 01 + 0. (7.3.4.1)

(7.3.5) Note that the proof of (7.3.4.1) sketched in 6.4.5 is much simpler; it does not use the identity 6.4.10.

(7.3.6) Proposition (Jacobi’s formula). The discriminant function A from (7.1.10.1) is given by

/7 \3 4 e’}
AZr+2)=2 <%) = (2m)'% [T (1 — g™ (= (@) (0h,)").

Proof. Combine (7.1.10.1) with 7.3.3 and the product formulas (6.4.12.2) (note that the exact value of the
factor ¢(7) in (6.4.12.2) is irrelevant).

(7.3.7) The formulas in 7.3.1 are also useful for numerical calculations, as the infinite series defining the
theta fonctions converge very rapidly.

7.4 Properties of o(z)

Let L C C be an arbitrary lattice.

(7.4.1) Recall that o'(2)/o(z) = {(z) and —('(z) = p(z) € M(C/L). This implies that, for each v € L,
the function

C(z4+u; L) —((z; L) =n(u; L) € C (74.1.1)
is constant. In fact,

ww) =nwiL) = [ () dz = - L ol2) dz,

Y

where v is any path in C — L whose projection to C/L is closed and has class equal to u € L = H,(C/L, Z).
The value of the integral does not depend on 7, as ¢'(z)dz = d({(z) is the differential of a holomorphic function
on C — L and the residues res, (('(2)dz) = 0 vanish at all a € L. Using the isomorphism ¢ : C/L — E(C)
from 7.2.1, we can also write

n(u) = - / E % (e = olpr(7)),
s oz da/fy) = p(z) dp(2)//(2) = p(z) dz.
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(7.4.2) Proposition (Legendre’s relation). Fix a basis L = Zw; + Zwy of L satisfying Im(w; /wa) > 0
and put n; = n(w;; L) (j =1,2). Then

w1 w2
= 27i.

mo N2

Proof. Fix a fundamental parallelogram D = {z = a 4 tjw; + taws |0 < t1,t9 < 1} for the action of L on
C containing 0 in its interior. As the only singularity of ((z) inside D is a simple pole at z = 0, the residue
theorem yields

a+twa
2mi = 2miresy(((2) dz) = . ((2)dz = / (¢(2) = C(z +w1)) dz+

-—m

atwi
+ / (C(z + wa) — C(2)) dz = wims — wymn.

n2

(7.4.3) Lemma. Foru € L, put )(u) =1 (resp. = —1) ifu/2 € L (resp. if u/2 ¢ L). Then
o(z 4 u) = Y(u)o(z)e"WEFE), (7.4.3.1)

Proof. Integrating (7.4.1.1) we obtain (7.4.3.1) with some ¢ (u) € C*. If u/2 ¢ L, evaluation at z = —u/2
yields ¢¥(u) = o(—u/2)/o(u/2) = —1. If u/2 € L, we can assume u # 0 (the case v = 0 is trivial). As
¥ (2u) = 9 (u)?, writing u = 2"v with v € L, v/2 ¢ L and n > 1 gives ¥ (u) =

(7.4.4) Construction of elliptic functions using o(z). The formula (7.4.3.1) implies that the con-
struction from the proof of 5.3.5 can be performed using the o-function: if aq,...,a,;b1,...,b, € C (not
necessarily distinct) satisfy >, a; =37, b; € C, then the function

lies in M(C/L) and its divisor is equal to div(f) = 3_;((P;) — (Q;)), where P; (resp. Q;) is the image of a;
(resp. of b;) in C/L. Here is a simple example:

(7.4.5) Lemma. Fora e C— L,

p(z) — pla) = — o(2)20(a)?

Proof. The functions p(z) — p(a) and f(z) = o(z — a)o(z + a)/o(z)? both lie in M(C/L) — {0} and have
the same divisor div(p(z) — p(a)) = (a) + (—a) — 2(0) = div(f); thus p(z) — p(a) = ¢ f(z) for some ¢ € C*.
If z — 0, then p(z) — p(a) ~ 1/2% and f(z) ~ —c(a)?/z2, hence ¢ = —1/0(a)?.
(7.4.6) In the special case when wy; = 7 (Im(7) > 0) and wy = 1, The Legendre relation 7.4.2 becomes

m = TN — 2mi. (7.4.6.1)

(7.4.7) Lemma. The function
g(2) = e 3F TG (4 T 4 7)

satisfies
g(z+1) =yg(z)

glz+7) = —e 2 g(2).
Proof. Direct calculation — combine 7.4.3 with (7.4.6.1).
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(7.4.8) Corollary. We have

o0

l_qnt 1_qnt_1) 27z 24T
g(z) = — (271'1) 1—1) 1:[ (t=e"T"% qg=1¢e"""T).

(1—qn)?

Proof. The function ¢(z) is holomorphic in C, has simple zeros at z € Z7 + Z (and no other zeros) and
satisfies 7.4.7. Thus g(z)/A(z) (where A(z) is the function defined in 5.3.4) is a meromorphic function on
C/L without zeros, hence constant. The value of this constant is determined by the asymptotic behaviour
for z — 0:

(oo}

g(z)~ 2z, (I—t)~=2miz,  A(z)/(1—t)~ [J(1—q)>

n=1

(7.4.9) Corollary. IfIm(7) > 0 and ne = n(1;Z7 + Z), then

©© 1_ nt — g1
o(zZr +Z) = (2mi) " e 2/ t1/2 —1/2 H ql )q ) =
—q"
n=1

(ta —_ eQ-rriaz’ qa — e27rion—).

=011 (2 7)(—2mi) ! g V/8em=/2 H =

Proof. This follows from 7.4.8, the definition of g(z) and the product formula (6.4.12.1) (together with the
exact value of ¢(7) given by (6.4.12.3)).

(7.4.10) One can give another (?) proof of 7.3.6 using the properties of the o-function, beginning with

o((wj —wi)/2)o((w; + wk)/2)
o(w;j/2)%0(wk/2)?

(by 7.4.5) and using the product formula 7.4.9 to evaluate o(w;/2) (for w; = 7,1,7 + 1).

5 — ex = plw;/2) — plwn/2) = —

7.5 Addition formulas for p(z) and the group law on E(C)

(7.5.1) The torus (C/L,+) is an abelian group with respect to addition, with neutral element 0. The
mutually inverse bijections

p:C/L — E(C) a: E(C)— C/L “(dafy) =
2 ((2), /(%)) S
00 O P»—>/ — (mod L) a*(dz) =dz/y

from 4.4.2 (resp. 7.2.2) transport this abelian group structure to E(C). The corresponding addition H on
E(C) has neutral element O and satisfies

(p(21), 9'(21)) B (p(22), 9'(22)) = (p(21 + 22), 9’ (21 + 22)).

(7.5.2) Characterization of “+” on C/L. The addition on C/L admits an abstract characterization in
terms of the isomorphism

m:ci°(c/L) = C/L

from 5.3.6. In concrete terms, if a;,b; € C (j = 1,...,N) are complex numbers (not necessarily distinct)
and P; = pr(a;), @Q; = pr(b;) their projections (under pr : C — C/L) to the torus, then the following
statements are equivalent:
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Pit+-+Py=Qi+-+QneC/L

N
@f eM(C/L)) D ((F) - (@) =div(f)

! (7.5.2.1)
a1+--+an=b+---+by (modL)
N a; N b;
Z/ dz = Z/ dz (mod L).
j=1"0 j=1"9

(7.5.3) Characterization of “BH” on F(C). Application of the bijections ¢, « from 7.5.1 to 5.3.6 yields
an isomorphism of abelian groups

B: CI°(E(C)) = E(C)
> ni(P;) = Bln,] Py,

where [n|P (for n € Z) is defined as in 0.5.0. Furthermore, if P;,Q; € E(C) (j = 1,...,N) are points (not
necessarily distinct) on F, then (7.5.2.1) translates into the following equivalent statements:

P1EE|ESPN:Q1EE|EE|QNEE(C)

N
(3f € M(E(C))) ((P5) = (@) = div(f)
= (7.5.3.1)
N B dy . Ny

(7.5.4) Example: Abel’s Theorem revisited. Let F(X,Y,Z) € C[X,Y, Z] be a homogeneous polyno-
mial of degree d = deg(F) > 1 and C : F = 0 the corresponding projective plane curve C' C P2.

Assume that the intersection E(C) N C(C) is finite; then the intersection divisor E(C) N C(C) =
(P1) + - -+ + (P3q) has degree 3d, by Bézout’s Theorem (the points P; are not necessarily distinct).

As
3d
f= W € M(E(C))*, div(f) = Z(Pj) —3d(0),

it follows from (7.5.3.1) that
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PiB- B Py =[3d0=0 (7.5.4.1)
on E(C). Equivalently,

3d

P;
/ dx =0 (mod L),
=Jo Y

which is a special case of Abel’s theorem.

(7.5.5) Example (continued). If d =1, ie if F = apX + a1Y 4 a2Z is linear (and non-zero), then
C : F =0is aline in P? and the intersection divisor E(C) N C(C) = (P;) + (P) + (P3) consists of three
points (not necessarily distinct).

The divisor of f = F/Z = apx + a1y + az € M(E(C))* is equal to div(f) = (P1) + (P2) + (P3) — 3(0), hence

PBPBEP;=[30=0 (7.5.5.1)

and

/ —"TJF/ —m+/ —sz(modL),
o Y o Y o Y

which was already proved in 2.3.3.

Each “vertical” line C' : X +¢Z = 0 (¢ € C) contains the point O; thus the intersection divisor
E(C) N C'(C) is equal to (O) + (P) + (P). If P = (z,y) # O, then necessarily P’ = (z,—y). As
OBl PHP =0, it follows that

(x,—y) = P' = [-1]P = [-1](z,y) (7.5.5.2)
is the inverse of P with respect to the group law.
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-1 P

Equivalently, one can argue that

P = (p(2),9'(2))
for some z € C — L, hence

[—1]P = (p(—2),¢'(—2)) = (p(2), —¢/(2))-

(7.5.6) Geometric description of the group law H. Given two distinct (resp. equal) points P, Q € E(C)
on E, let C = PQ C P? be the unique line passing through them (resp. the tangent line to E containing
P = Q). The intersection divisor E(C) N C(C) is then equal to (P) + (Q) + (R), for a uniquely determined
point R € E(C). We denote this third intersection point by

PxQ:=R. (7.5.6.1)

The discussion in 7.5.5 implies that

PxQ=[-1](PBQ), O R=[-1]R,

hence

PBQR=0x(PxQ), (7.5.6.2)

which gives a very simple geometric characterization of the group law H.

O

P*Q

P+Q
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It is tempting to take (7.5.6.2) as a definition of H. However, this presents several problems: firstly, the
verification of the associative law

(PBQ)BRLPB(QBR)

becomes rather non-trivial (see 10.2.6 below for more details). Secondly, the “linear” nature of (7.5.6.2)
conceals the more general “non-linear” identity (7.5.4.1). We have avoided both problems by taking the
isomorphism

~

CI°(E(C)) = E(C)

as a starting point.

(7.5.7) Formulas for H. On the other hand, (7.5.6.2) gives an explicit formula for P, B P». For example,
if we assume that none of the three intersection points P; = (z;,y,) from 7.5.5 is equal to O, then we can
work with the affine line C' N {Z # 0}, given by the equation y = ax + b. Solving the system of equations

y = ar + b, y? = 42° — gow — g3,

we obtain the polynomial identity

42° — gow — g3 — (ax + b)? = 4(z — 1) (7 — 22) (T — 23).

Comparing the coefficients at 2 yields

a? 1 /ya—y 2
1'1+1'2+1'3:Z:Z<Z‘27;>
2— T

(assuming that P; # P»), hence

1y =\’
== — X1 — Ta. 7.5.7.1
3 4 <x2 — T e 2 ( )
The y-coordinate of Pj is equal to
ys = arz + b, b=y —axy =y — 11 (u) . (7.5.7.2)
X9 — I

To sum up, if P; # Ps, then (7.5.7.1-2) give explicit formulas for the coordinates of

(z1,91) B (22, 92) = [-1](z3,y3) = (73, —Y3)

as rational functions in x1,xe,y1,ys (With coefficients in Q).
If P, = P,, then the line y = azx + b is tangent to E at P;. Differentiating the equation

y? = 42® — gox — g3

yields
dy 1 g2
2y dy = (1222 — d:>—:—(62—_)
ydy = (1227 — go) dz =y %)
hence
1 g2
a=-- (6~ )
and

75



2
(6af — 92/2)* ) _ (i — 92/4)" — 221(42} — g1 — 9) _ i+ Sod+ 20 + 7

7.5.7.3
49% y% 41’? — 921 — g3 ( )

T3 =

(7.5.8) Addition formulas for p(z). The formulas (7.5.7.1-3) can be rewritten in terms of the bijection
¢ : C/L — E(C). Writing

Py = (z5,9;) = (p(2), ' (%)),  21+22+2=0€C/L,
we obtain
1
4

@(Zl +22) = (M

2
o(72) — o(=1) ) —p(z1) — p(22) (7.5.8.1)

in the case z; # 29 € C/L and

2
p(2)! + $p(2)* +2030(2) + 13
4p(2)° — g20(2) — g3
Differentiating (7.5.8.1-2) with respect to z; (resp. z) yields explicit formulas for p’(z1 + 22) resp. ¢'(22).
(7.5.9) Exercise. Show that, for each j = 1,2,3, there exists f;(z) € M(C/L) such that

(7.5.8.2)

p(22) =

0(22) — e = p(22) — p(w;/2) = [} (2).

(7.5.10) Proposition. For each n € Z — {0}, the multiplication by n map [n] : E(C) — E(C) is given
by rational functions of the coordinates, with coefficients in Q(g2,¢g3). In other words,

p(nz), o' (nz) € Q(g2, 93, p(2), ¥’ (2)).

Proof. Induction on |n|, using (7.5.5.1) and (7.5.8.1-2).
(7.5.11) Torsion points. For each n > 1, denote by

E(C)n ={P € E(C)[[n]P = O}

the n-torsion subgroup of E(C) (which is an elliptic analogue of the group of n-th roots of unity from 0.6.0).
As

(C/L), = %L/L = (%Z/Z) w1 ® (%Z/Z) wa,
it follows that
E(C)y = {0} U {(p((aws + bwa)/n), o' ((awy + bws)/n)) | (a,b) € (Z/nZ)* — {(0,0)}}.
For n = 2, a point P = (z,y) € E(C) — {O} satisfies
2P =0 < P=[-1]P < (2,y) = (z,~y) < y=0;

Thus

E(C)2 = {0} U{(e1,0), (e2,0), (e3,0)}.

For n = 3, a point P € E(C) satisfies [3]P = O iff [2]PB P = O, i.e. iff the tangent line to E at P has
intersection multiplicity with E at P equal to 3. Geometrically, this amounts to P being an inflection point
of E(C).
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7.6 Morphisms C/L; — C/Ls
Let Ly, Ly C C be lattices and Ey, F5 the corresponding cubic curves (as in 7.2.1).
(7.6.1) Proposition. (i) The set of holomorphic maps f : C/L; — C/ Ly satistying f(0) = 0 is equal to
{f(2) = Az|A € C,AL; C Ly}

In particular, each such map is a homomorphism of abelian groups (f(z1 + z2) = f(z1) + f(22)).
(ii) The map E1(C) — E5(C) corresponding to f is given by

(9(2; L), 9' (25 L1)) = (p(Az; La), 9 (Az; L))

(and is also a homomorphism of abelian groups).
(iii) f is an isomorphism of Riemann surfaces <= AL; = Lo.

Proof. As C is simply connected and the projection pro : C — C/Ls is an unramified covering, there exists
a unique holomorphic map F' : C — C satisfying F'(0) = 0 and making the following diagram commutative:

c . c

c/L, —1 ¢/L,.

For each u € Ly, the function

9(z) = F(z +u) — F(2)
is holomorphic in C and has discrete image g(C) C Lo; thus g(z) is constant and
0=4g'(2) = F'(z + u) - F'(2),

which implies that F'(z) € O(C/L) = C is constant as well, hence F(z) = Az + F(0) = Az for some A € C.
As proo F' = fopry, we have ALy = F(L1) C Lo, proving the non-trivial implication in (i). The statements
(ii) and (iii) are immediate consequences of (i).

(7.6.2) Corollary. The j-function (7.1.10.2) defines a map

j : {Isomorphism classes of tori C/L} — C.
Proof. This follows from 7.6.1(iii) and j(AL) = j(L).
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(7.6.3) Definition. An isogeny f : C/L; — C/Ly is a non-constant holomorphic map f satisfying
7(0) = 0.

(7.6.4) In other words, 7.6.1 implies that an isogeny is given by
f : C/L1 — C/L2
Z Az, AL; C Ly, A #0.

It is a proper unramified covering of degree

(7.6.4.1)

deg(f) = [Ker(f)| = [\"'La/L1| = |L2/ALy|.

A typical example of an isogeny is the multiplication map
[n]: C/L — C/L, Z = nz (neZ—{0}),
which has degree
1 2
deg[n] = |=L/L| = n*.
n
(7.6.5) Dual isogeny. In the situation of (7.6.4.1), we have

deg(f) - Ker(f) = 0 —> deg(f) - A" L C Ly.
This implies that the map
7o/ et e,

is well defined, and in fact is an isogeny — the dual isogeny to f. It is characterized by the properties

Fof=ldeg(f)]: C/Li — C/L,

fof=ldeg(f)]: C/Ly — C/Lo.
For example,

[n] = [n] (n € Z—{0}).

(7.6.6) Proposition. Let f: C/L; — C/Ly be an isogeny. Then:

(1) Ker(f) acts on M(C/Lq) by (u=g)(z) = g(z — u) and the fixed field of this action is equal to
M(C/Ly)* ) = f*(M(C/L2)) = {f*(h) = ho f | h € M(C/La)}.

(i) M(C/Ly) is a finite Galois extension of f*(M(C/Lz)), with Galois group isomorphic to Ker(f).

Proof. (i) We use the notation (7.6.4.1). A function g € M(C/L;) satisfies uxg = g for all u € Ker(f) <=

g(2) is A1 Ly-periodic <= h(z) = g(A\712) is Lo-periodic < g(z) = h(A\z) = f*(h), h € M(C/Ly).
(ii) This follows from (i), by E. Artin’s Theorem.

(7.6.7) Definition. Let L C C be a lattice. The endomorphism ring of C/L is
End(C/L) ={f:C/L — C/L| f holomorphic, f(0) =0} ={Ae€ C|A\LC L} C C.
Above, we have identified A with the corresponding map [\ : C/L — C/L.

(7.6.8) Proposition. Let L C C be a lattice. Then

(i) End(C/L) = End(C/)\L) (A e C*).

(ii) Let L =Zt + Z, where Im(7) > 0. Then

ZAT +Z, if AT+ Br+C=0,A,B,C€Z, (A BC)=1

End(C/Zr + Z) = {
Z, otherwise.
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Proof. The statement (i) is clear. In (ii), assume that A € C — Z satisfies AL C L. Then there exist
a,b,c,d € Z, a # 0 such that

Arl=ar+b

= ar*+ (b—c)T —d=0.
/\'TZCT+d} at + (b—o)r

Divide this quadratic equation by the ged of the coefficients, in order to obtain A72 4+ BT+ C = 0 as in the
statement of the Proposition. Then

A=ar+b€Zar+Z CZAT+Z (as Ala).
Conversely, the identities
AT 1= At € L, Ar-1=A7*=-Br-CelL
imply that ZAT + Z is contained in End(C/Z7 + Z).

(7.6.9) Definition-Exercise. If End(C/L) # Z, we say that C/L has complex multiplication. Show
that K = End(C/L) ® Q is then an imaginary quadratic field and deg([\]) = Ng/q()) (A € End(C/L)).

(7.6.10) Examples: (1) L = Ziw + Zw, in which case End(C/L) = Z[i], g3 = 0 and g # 0, i.e.

E — {0} : y* = 42° — gy
(2) L = Zpw + Zw, where p = ¢*™/3; then End(C/L) = Z[p], g2 = 0 and g3 # 0, hence

E — {0} : y* = 423 — gs.

(7.6.11) Definition-Exercise. Let L C C be a lattice. The group of automorphisms of C/L is defined
as the group of invertible elements of End(C/L):

Aut(C/L) = End(C/L)".

Show that Aut(C/L) = {f € End(C/L)| deg(f) =1} and

{+1, i}, if L = Ziw + Zw
Aut(C/L) = { {£1,4p, £p*}, it L =Zpw+ Zw
{%1}, otherwise.

8. Lemniscatology or Complex Multiplication by Z[i]
Throughout this section, y/z will denote the non-negative square root of a non-negative real number x.
8.1 The curve y2 =1 —z*

(8.1.1) According to 3.7.7-8, the affine plane curve

Vag 1 y? =1—z*

(over C) is smooth and its projectivization admits a smooth desingularization V' = V,g U {O4,0_} with
two points at infinity, which correspond to the ‘asymptotics’

(z,y) — O1 <= x — 00, y/a? — +i.

In coordinates, let V/; be the smooth affine plane curve
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Vlﬂ' y l4 — 1.

The change of variables

¥ =1/, y =y/z?, x=1/2, y =1 /" (8.1.1.1)

defines an isomorphism of curves

Varr — {(2,9) = (0, 1)} — Vg — {(@",¢/) = (0, £i) = O} (8.1.1.2)

and V is obtained by gluing Vag and V/g along the common open subset Vg — {(0,£1)} — Ve — {04}
via (8.1.1.2).

We shall need this construction only in the analytic context: as Vag(C) and V/;(C) are Riemann

surfaces and (8.1.1.2) is a holomorphic isomorphism, we obtain a structure of a Riemann surface on V(C)
(cf. 8.1.2(1)).

(8.1.2) Exercise-Reminder (cf. 4.2.4-7). Let p: V(C) — P1(C) be the map defined by
pla,y)=(z:1),  (z.9) €Var(C)  pla’y)=(1:2), (@'y)€ Vg(C)

Show that

(i) The natural topology on V(C) is Hausdorff.

(ii) p is a proper holomorphic map of degree deg(p) = 2.

(iii) V(C) is compact.

(iv) The ramification points of p are (z,y) = (£1,0), (£¢,0).

(v) The genus of V(C) is equal to g(V) = 1.

(vi) The differential wy = dx/y = —dz’/y’ is holomorphic on V(C) and has no zeros (ie. (VP €
V(C)), ordp(wy) =0).

(8.1.3) As observed in 4.4.4, the same arguments as in 4.3-4 show that the group of periods

Ly :{/WVWGHl(V(C),Z)} cc

is a lattice and the Abel-Jacobi map

Q
ay V(C) — C/Lv, av(Q) = /(0 . wy (mOdLv) (8131)

is an isomorphism of Riemann surfaces.
(8.1.4) Let us compute a few values of ay . By definition,
ay((0,1)) =0,

1

Q
o VIt 2 (mediv)
ay((0,-1)) = Q (mod Ly)

Ozv((LO) =

ay((—1,0)) = ;Q (mod Ly ) = —% (mod Ly ).

Indeed, the set of real points V(R) = V,g(R) of V' (say, with the negative orientation) is a closed path on
V(C), hence

1
dx
w :4/ . —20¢€Ly.
/V(R) v 0o V1I—at v

Similarly, the substitution z = t=1 gives
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Oz 1 [ dx 1 /Y at 0
ay(01) —ayv((1,0)) = wy = — = — = Fi—,
v (01) — av((1,0)) /() v iz/l — iz/0 L=

hence

ay(0y) = %Q (mod Lv). (8.1.4.1)

8.2 The lemniscate sine revisited
(8.2.1) The inverse of the Abel-Jacobi map (8.1.3.1) is an isomorphism of Riemann surfaces

oy : C/Ly — V(C).
By (8.1.4.1), ¢y restricts to a holomorphic isomorphism

144
C/Ly —{

Q (mod Ly)} =5 Vag(C), 2z (x(2),y(2)),

where x(z),y(z) are holomorphic functions on C/Ly — {%Q (mod Ly )} satisfying

y(2)? =1 —x(2)4, dﬁ:) =y(2) (as ol (dz) = da/y) = 2'(2)? =1 — x(2)~.

(8.2.2) Definition of si(z). In fact, z(z) is the restriction of the meromorphic function

sl: C/Ly25v(C)—2-PL(C),

where p is the map from 8.1.2. The function sl(z) is meromorphic on C/Ly, holomorphic outside the two
points Q) (mod L) and satisfies

sl'(2)? =1 —sl(2)*
The isomorphism ¢y is given by the formulas

z > (sl(2), sl'(2)), z # QO (mod Ly)
PV 1

The calculations from 8.1.4 imply that

(8.2.3) Properties of si(z). The maps [+i] : V(C) — V(C) defined by

[Fil(z,y) = (Fiz,y),  (z,y) € Var(C);  [Fi(a,y) = (Fia',—y),  (2",y') € Vig(C)
are mutually inverse holomorphic isomorphisms satisfying [4:]*(wy ) = £iwy. This implies that

for any path v on V(C). In particular, letting « run through the representatives of Hy(V(C),Z) we obtain
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iLy = Ly.
Taking for v a path from (0, 1) to @ yields
ay ([£]Q) = iay(Q) < (sl(xiz), sl'(iz)) = (+isl(z), sl'(z)) (8.2.3.1)
Ifo<z<1,lety=+1—x% Then

av (2, —y)) = ay (0, 1)) + / w ﬂdf_t — 0+ av((z.y)),
hence
sl(z+ Q) = —sl(z) (8.2.3.2)

for z € [0,9/2]. It follows from 3.2.2.9 that (8.2.3.2) holds everywhere on C/Ly . The relations (8.2.3.1-2)
imply that

sl(z+1Q) =isl(z/i + Q) = —isl(z/i) = —sl(z)
slz+ (1+149)Q) = —sl(z +1Q) = sl(z),
hence

Z-(1+0)Q+Z-20=(1492[i] - QC Ly. (8.2.3.3)

As we shall see in 8.3.5 below, the inclusion (8.2.3.3) is in fact an equality.
As in 7.5.1, the bijection ¢y induces an abelian group law B on V(C) with neutral element (0,1),
characterized by

(sl(z1), sl'(21)) B (sl(22), 8" (22)) = (sl(z1 + 22), s’ (21 + 22)).

8.3 Relations between si(z) and p(z)
(8.3.1) The cubic curve E. The smooth plane curves (over C)
Fag : v? = 4u® — 4u = 4(u+ Du(u — 1)
E = E.s U{0O}, O=(0:1:0)

are of the type considered in 7.2. In particular, wg = du/v is a holomorphic differential without zeros on
E(C) and the Abel-Jacobi map

P
a:E(C)— C/L, a(P) = / wg (mod L)
o
is an isomorphism of Riemann surfaces, where

L=1{ welve m(EC).2)
v
is the period lattice of wg. According to 7.2.6(i), we have L = Zw; + Zws, where
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dxr w1

[o%s) 1
. dzx
ut’} I — R %
2 /1 Vaz3 — 4z 2 /0 Viz — 423

(z=t~1

y . [ dt
1 —_—

/1 VA3 — 4t 2

hence
W1:iWQ, L:Z[i]~w2.
(8.3.2) A map between V and E. In terms of the variable z € C, the inverse maps to «, ay are given
by
¢:C/L = E(C), 2z (p(zL),¢(21L)),
oy : C/Ly — V(C), 2+ (sl(2), sl'(2)),

where

p(2) ~ 272, sl(z) ~ z as z — 0. (8.3.2.1)

The asymptotic relations (8.3.2.1) seem to suggest the following educated guess: perhaps

1
sl(2)?

o(z L) 2 ?? (8.3.2.2)

Does (8.3.2.2) hold? If true, then the identity

I ~2sl'(2)
sl(z)2)  sl(z)3
tells us that we should consider the map

(z,y) = (1/2%,=2y/2®),  (2,y) € Varr(C) = {(0,£1)}
4

(0,£1) — O,

(@) = (22, —22"y), («",y') € V{g(C).
(8.3.3) Exercise. f defines a proper holomorphic map f : V(C) — E(C) of degree deg(f) = 2, which is
everywhere unramified.

(8.3.4) The formula

Frtwn) = 2D~ S - Ty — iy (a)

implies that ¢}, o f*(wg) = dz and
q [0 (1,0) SRON
2 Jo 0.1) o 2

L=Z[i-Q=Z-iQ+Z-Q.
(8.3.5) Proposition. The lattice Ly is equal to

hence

Ly=Z - 14+)Q+Z-20=(14+4)LCL=Z-iQ4+Z-9Q,
and the following diagram is commutative:

c X c/Ly 2 v(O)

H ! l

c X c/L < EQ.
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In particular,

and f is a homomorphism of abelian groups.

Proof. For each closed path v on V(C),

this implies that Ly C L. Similarly, for each point ) € V(C) we have

Q Q

av(@ = [ wy(modLy)= [ f*(wp) (modLy) = / wp (mod Ly),
(0,1) (O,l) O

hence

ay(Q) (mod L) = a(f(Q)) (mod L).

This proves the commutativity of the diagram, as ¢ = o~ ! and ¢y = a‘_,l. We know from (8.2.3.3)
that L' = Z- (1 +9)Q+ Z-2Q C Ly. On the other hand, our diagram together with 7.6.4 imply that
|L/Ly|=deg(f) =2=|L/L'|, hence L' = Ly.

(8.3.6) The dual isogeny. The duplication formula (7.5.8.2) and its derivative imply that the multiplication

by 2 on E(C) is given by
u2 2 u2 ut — Gu2
[Q]E(u’v)<< +1) 2+ 6 +1)>_

v v3
Define a map f : E(C) — V(C) by ]?(O) = (0,1) and

4 2 . .
- (2,) = (— g, 8t ) if u # i

MDY - (o =) o

v

The map [ is holomorphic (exercise!) and satisfies

fof=12m  fof=[lv.

(8.3.7) Exercise. (i) Show that the map [1 + i]y : V(C) — V(C) has the same kernel as f.

(i) Show that there exists an isomorphism of Riemann surfaces g : V(C) — E(C) such that go[l1+i]y = f.

(iii) Find explicit formulas for g and g~*.

(8.3.8) Proposition. For each k > 1,

/ 1

— 4k
(m-{-nl)‘lkickg s

Gary2(Z[i]) = 0, Gar(Z[i]) = Z

m,neZ
where ¢ € Q is a (positive) rational number. For example, ¢; = 1/15.

Proof. As iZ[i] = Z[i], the last formula in 7.1.6 implies that
Gapr2(Z[i)) = Gar2(iZi]) = i~ 2 Gaps2(Zli]) = Guars2(Zli]) = 0.
The Weierstrass function p(z) = p(z; L) satisfies the differential equation
¢'(2)* = 4p(2)* — 4p(2);
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differentiating, we obtain

o (2) = 6p(2)* — 2. (8.3.8.1)
As

4 = go(L) = 60 G4(L) = 60 G4(Z][i] - Q),
it follows that

. . o
G4(Z[l]) = Q4 G4(Z[l] . Q) = E
Substituting to (8.3.8.1) the Laurent series expansions
1 oo
pz) = 5 + > (4k — 1) Gup(L) 22
k=1
6 oo
0'(2)? = ot > (4k — 1)(4k — 2)(4k — 3) G (L) 2"
k=1

and comparing the coefficients, we obtain, for each k > 1,

(4k — 1)((4k — 2)(4k — 3) — 12) G4 (L) = 6 Z (45 —1)(4l — 1) G4;(L) Gai(L),

hence

Gar(Z[i]) - Q™% = Gui(Z[i] - Q) = G (L) € Q
is rational (and positive), by induction.

(8.3.9) Exercise. (i) What is the analogue of 8.3.8 (and of its proof) if we replace o(z) by sin(z)?
(ii) Compute the first few values of ¢,,. What can one say about the denominators of the numbers (4k—1)!-¢x?
(iii) What is the analogue of (ii) in the context of (i)?

8.4 The action of Z[i]

(8.4.1) AsiL =L and iLy = Ly, both C/L and C/Ly are Z[i]-modules. Transporting this structure to
E(C) (resp. V(C)) by ¢ (resp. ¢v), we obtain an action of Z[i] on E(C) (resp. V(C)) given by

[l (p(2), ¢'(2)) = (p(az), ¢'(az))

€ Z[i]).
[a]y (sl(2),sl'(2)) = (sl(az), sl (az)) (a D
The maps f, ffrom 8.3.2,6 are then homomorphisms of Z[i]-modules.
For example, the relations (7.1.6) and (8.2.3.1) imply that
[:I:Z]E(ua U) = (77%7 iiv)v [71]E(uv U) = (u7 *v) (8411)
[£i]v (z,y) = (£iz,y), [1v(z,y) = (-=,y).

Denoting the a-torsion submodules by

E(C)a = E(C)[a] ={P € E(C)|[a]pP = O}
V(Cla =V(C)la] ={Q € V(C)|[a]vQ = (0,1)},
then it follows from (8.4.1.1) that

E(C)[1+1i] ={0,(0,0)}, V(C)[1 +14] = {(0,£1)}.
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(8.4.2) Group law on V(C). The addition formula (1.4.5.1) (whose more general form was proved in
2.3.1) can be written as

sl(z1)sl' (z2) + sl'(z1)sl(z2)
1+ sl2(z1)sl?(22) '

Differentiating (8.4.2.1) with respect to z1, we obtain an explicit formula for the group law B on V(C):

sl(z1 + z2) = (8.4.2.1)

21y + 22y y1y2(1 — 2ixd) — 2x129(af 4 23)
sy1) B (22, 2) = : . 8.4.2.2
(@1, 91) B (22, 92) ( 1+ 2222 (1 + 2323)2 ( )
Above, (zj,y;) = (sl(z}),sl'(z;)) € Vag(C).
Multiplying together the formulas (8.4.2.1) for £z5, we obtain
2,2 _ 2.2 201 — %) — 22(] — 24 2 _ .2 12 g2

sl(z1 + 22)sl(z1 — 22) = th 2$§y21 _ il =) 2x§(2 ) _ o 2%2 =2 (212) ° 2(22) . (84.2.3)

(14 x%23) (14 z323) 14+ a5zs 1+ sl2(2z1)s%(22)

(8.4.3) Exercise. Show that, for (z,y) € Vog(C),
(2,9) BOL = (iz,q:z'yﬁ) |
T

[Hint: Rewrite (8.4.2.2) in the variables z',y’.]

(8.4.4) Examples. Combining (8.4.1.1) with (8.4.2.2), we recover Fagnano’s formulas from 1.4.3-4:

[1+i)(z,y) = (z,y) B (+iz,y) = ((1ﬂ;z’)as’ 14;2334) _ ((lj;i)x, ifﬁ)

2¢y 1 —6z*+28
14+z4" (1 +24)2 ’

(8.4.4.1)

2)(z,y) = (v,y) B (z,y) = (

where (z,y) € Vag(C) (i.e. y?> =1 —2%).
Note that sl’(az) can be obtained from sl(az) by differentiation. If (z,y) = (si(z), sl’'(z)), then
[0](z,y) = (¥a, ya) = (sl(az), sl'(az)),

where x4, y, are rational functions of x,y with coefficients in Q(), satisfying

dr, = asl'(az)dz = aya dz, dr = sl'(2)dz = ydz,
hence

1
Ya d?x = dz,. (8.4.4.2)

This means that one can obtain y, from z, by a very simple calculation.
For example, for & = 1 + ¢, we have x1,; = (1 +4)z/y. Combining (8.4.4.2) with

d(at + 12 — 1) = 0 = 42® da + 2y dy = 0 = dy = —20° /y da,

we obtain

1+1 Y Y

driy; dr  xzdy dx <y2 +2m4>
> — \ T o5 |»

Y y?
hence
y2 + 2zt _ 1+ at
y? y?

Yi+i =

)
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in line with (8.4.4.1).
(8.4.5) Examples (continued). Let us compute

(1+d)z 1424

L+ 2i](2,y) = [il(@,y) B 1L+ i)(z,y) = (iz,y) B ( ) — (@raan yres).

y 1—uxt
As
1T zt .
) L (1 4+i)e (1420 —a5  (1+2i) — ot
Tiy2i = 572 = ~— = — T, (8.4.5.1)
I 1—(1+2i)x 1—(1+2i)x

it follows from (8.4.4.2) that

dr _dwiye _ 1-(1 — 2i)x? d + (1+ 2i)z — 2° 4B d — 1+ (2 +8i)xt + 28 i
V2T T T 9 T 11— (1+ 2028 (1—(1+2i)z%)? T T1- (1 t20)2h2 T
hence
1+ (2+ 8)at + 28
i = - 8.4.5.2
Y142 (1= (14 20)z*)? ( )
In the similar vein,
2¢y 1 —6z* 428
3 - EEl =
[ ](xay) ($>y) <1+1347 (1+I4)2 ) ($3,y3)7
where
xr e x4 CL‘S xT 7x4
B ey .
8 1+% 14 624 — 328
and
dv _des _1-— 10z — 328 . (3 — 62t — 2%)(8z* — 828) dr — 1 — 2824 + 6% — 28212 + 216 i
Y T T3 T 1+ 62t — 348 (1+ 62* — 32°)2 - (1+ 62* — 32°)2 ’
hence
1 — 282% + 628 — 28212 + 16
ys = y. (8.4.5.4)

(1+ 6a* — 328)2

(8.4.6) A change of sign. The formulas (8.4.5.1-4) become more symmetric if we apply [—1](z,y) =
(_x,y):

st (142) 1+ (2+8i)at 428

o _ 4.6.1
o +62% —3  1— 28z + 625 — 28272 + 210

[=3](z,y) = (1 + 62t — 328 (1 + 6a® — 325)2 ) ' -

(8.4.7) Congruences. Note that

1+ 248z + 2% = (1 — 2% = ¢* (mod (—1 — 2i)),
1 —28z% + 628 — 28212 + 216 = (1 — 2%)* = ¢/® (mod (-3));
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the formulas (8.4.6.1-2) then imply that

[~1 = 2] (2,y) = (2°,9°) (mod (-1 - 27)),
[=3] (z,y) = (2", y°) (mod (-3)).

These congruences should be interpreted as follows: o« = —1 — 24 (resp. @ = —3) is an irreducible element
of Z[i] of norm Na = a@ = 5 (resp. Na = 9) and both components z,, y, of [a](z,y) are elements of the
localization R, of the polynomial ring R = Zli][z,y] at the prime ideal generated by «; it makes sense,
therefore, to consider the residue classes of 4,y modulo alR(,) as elements of the residue field of R,
which is equal to

(8.4.7.1)

Ra)/aR(a) = Frac(k(a)[z, y]) = k(a)(z,y),
i.e. to the field of rational functions in z,y over the finite field k(a) = Z[i]/aZ[i] with Na elements.

(8.4.8) Making a Conjecture. What is the general form of (8.4.7.1)?7 What distinguishes the values
a=—1—2¢,-3 from 1+ 2¢,3, for which we have

0 o (8.4.7.1)
8] (z,y) = (—=2”,y”) (mod (3))?
Recall that the cogruences 0.5.1
[P*le(x,y) = (2", y7) (modp) (8.4.7.2)
for the group law on the circle involved multiplication by
p* = (=)@, (8.4.7.3)
for odd prime numbers p. As
p* =1 (mod4),
it is natural to ask whether there is a similar congruence condition characterizing a« = —1 — 2i, —3 € Z[i].

In these two cases

(—1—2i)—1=-2—2 = (—1)(2 + 2i),
“i= {(—3)—1:_4: (=1 +4)(2 + 2i),
which would suggest the following
(8.4.9) Conjecture. If a € Z[i] is an irreducible element satisfying o = 1 (mod (2 + 2i)), then

Noz, yNa) (

[a](z,y) = (z mod ),

where Na = aa.

(8.4.10) What are these congruences good for? In the case of the circle, the quantity (8.4.7.3) appears
in the statement (and various proofs) of the Quadratic Reciprocity Law. In fact, as we shall see in 9.2 below,
the congruence (8.4.7.2) can be used to prove the Quadratic Reciprocity Law.

Assuming that 8.4.9 holds, can one deduce from it a more general Reciprocity Law — perhaps for higher
powers — involving elements of Z[i]? We shall investigate this question in section 9.

8.5 Division of the lemniscate
(8.5.1) Algebraic properties of the numbers sin(ma/n) are intimately linked to geometry of regular polygons.
Their lemniscatic counterparts sl(af2/n) are the polar coordinates of the points that divide the right half-

lemniscate into n arcs of equal length Q/n.
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Note that, if 0 < a < n, then
0 < sl(aQ2/n) < 1, sgn(sl’(af)/n)) = sgn(a — n/2). (8.5.1.1)
(8.5.2) Examples. (n=3): let (z,y) = (sl(©2/3),sl'(22/3)) € V(R). As
Bl(z,y) = (sl(€), sI'(2)) = (0, 1),
the triplication formula (8.4.5.3) implies that x is a root of
2® 462t —3 = 0;
the only root of this equation contained in the interval (0,1) is z = V/2v/3 — 3; applying (8.5.1.1) once again
we see that y = v/1 — x* is the positive square root; thus
(s1(/3),sI'(©2/3)) = (V/2V3 — 3,3 —1). (8.5.2.1)
The values (8.5.2.1) can also be deduced from Fagnano’s duplication formula, as
2](a,b) = (s1( — ©/3), sI'(2 — 9/3)) = (a, ~b).
(n =4): The point (x,y) = (sl(Q2/4),sl'(Q/4)) satisfies
[2](z, y) = (s1(2/2), s1'(2/2)) = (1,0),
hence the duplication formula for si’ (8.4.4.1) implies that z is a root of
a® — 62 +1=0.

As in the case n = 3, there is precisely one root contained in the interval (0, 1), which is easily calculated.
The final result is

(sl(2/4), sI'(Q/4)) = (\/\/5 —1, \/Ni —2). (8.5.2.2)

(8.5.3) Constructibility. The attentive reader will have noticed that all values occurring in (8.5.2.1-
2) involve only iterated square roots of rational numbers. Such expressions are precisely the ‘constructible’
numbers in the sense of Euclidean geometry, i.e. those equal to distances between points obtained by iterated
intersections of lines and circles, starting from a segment of unit length.

The corresponding elementary counterparts of 8.5.2.1-2, namely the numbers

sin(m/3) = v3/2,  sin(r/4) = v/2/2,
are constructible for the simple reason that for the small values n = 3,4 the regular n-gon is constructible.

(8.5.4) Exercise. (i) Let P = (a,b) (a > 0) be a point on the lemniscate. Show that:

the two numbers a, b are constructible <= r = \/a2 + b2 is constructible.

Of course, r = sl(s), where s is the length of the arc of the lemniscate from (0,0) to P; cf. 1.3.1.

(ii) sl(s) is constructible <= sl(2s) is constructible.

(iii) For each m > 0, the points dividing the half-lemniscate into n = 2™ (resp. n = 3 -2™) arcs of equal
length Q/n are all constructible.

(iv) What about the case n = 57 (Note that the regular pentagon is constructible, as cos(2mw/5) =
(vV5-1)/2.) [Hint: Q/(1 4 2i) +Q/(1 — 2i) = 2Q/5; use (8.4.5.1-2).]
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9. Lemniscatology continued: Reciprocity Laws ()

9.1 Quadratic Reciprocity Law

(9.1.1) TIrreducible quadratic polynomials

f(x) =az® +bx+c (a,b,c € Z,a #0)

with integral coefficients have the following remarkable property: only 50 % of prime numbers appear in
the factorization of the values f(z) (x € Z); such prime numbers are characterized by suitable congruence
conditions modulo [b? — 4ac|.

For example, the prime numbers p # 2 (resp. p # 2, 3) occurring as factors of the numbers of the form
22 + 1 (resp. 2% + 3) are precisely the prime numbers p = 1 (mod4) (resp. p = 1 (mod 3)).

By completing the square

4af(x) = (2ax + b)? — (b* — 4ac),

2

it is enough to consider the polynomials f(x) = x* — a; the answer can then be formulated in terms of the

Legendre symbol.
(9.1.2) The Legendre symbol. If a € Z and p is a prime number not dividing 2a, one defines

(a) +1, (3xr € Z) 22 =a (modp)
N -1, (Vx € Z) 22 # a (mod p).
The multiplicative group (Z/pZ)* is cyclic of order p — 1; this implies that

a

(}—9) =a"T (modp) (9.1.2.1)

(“Euler’s criterion”). In other words, the Legendre symbol induces an isomorphism of abelian groups

* * ~ a
Fi/F:? = {1}, ar— (;)

2)-()6)

-1 po1 +1, p=1 (mod4),
(7> =)= = { o p= 3 (modd). (9.1.2.3)

(9.1.3) Lemma (Gauss). Let q # 2 be a prime number; fix a subset ¥ C Z/qZ—{0} such that Z/qZ—{0} =

»U(—X) (disjoint union). For example, we can take ¥ = {1,2,...,(q — 1)/2}. Fix an integer a € Z, q } a.
For each o € ¥ there is a unique pair €, = +1 and ¢’ € ¥ satisfying ac = e,0’ € (Z/qZ)*; then

- ()

In particular,

and

Proof. Dividing both sides of the equality

a'T H o= H(aa) = (H ec,> H o' €(2/qZ)*

gED gED ceY o'ex

(1) Section 9 is not for examination.
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by

[1 < z/azy

oED
yields the result.

(9.1.4) Exercise. Applying 9.1.3 to a = 2, show that

(2> _ (71)%_1 B {+1, p= =1 (mod8),

p -1, p = £3 (mod 8).

(9.1.5) Quadratic Reciprocity Law. Let p # g be prime numbers, p,q # 2. Then

0)- (e

(9.1.6) Using (9.1.2.1-2), the Quadratic Reciprocity Law can also be written as

£)-() e

(9.1.7) Let a € Z —{0,1} be a square-free integer. Writing a in the form

pi—1
% J

a=(=1)"2"p1 - P, p;=(=1)"7 pj,

where u,v € {0,1} and p; are distinct odd primes, the Quadratic Reciprocity Law implies that we have, for

each prime g 1 2|al,
(- EE-@)

As the value of (pij) (resp. (‘Tl), resp. (%)) depends only on the residue class of ¢ modulo p; (resp.

modulo 4, resp. modulo 8), it follows from (9.1.7.1) that (%) depends only on the residue class of ¢ modulo

A, where

lal, a=1 (mod4)
A= { (9.1.7.2)

4|al, a # 1 (mod4).

Moreover, if ¢; (j = 1,2,3) are primes not dividing 2|a| satisfying

q192 = q3 (mOd A)7

then (9.1.7.1) together with (9.1.2.2-3) and 9.1.4 imply that

@) G)=6)

As each congruence class in (Z/AZ)* contains a prime number, the previous discussion implies the following
result.
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(9.1.8) Proposition. If a € Z — {0,1} is a square-free integer and A is defined by (9.1.7.2), then there
exists a unique surjective homomorphism of abelian groups

Xa : (ZJAZ)* — {£1}

satisfying
a

(o (mod 4)) = (%)

for all prime numbers q 1 2|al.
(9.1.9) Example: Fora=3=(—1)-(=3) = (—1) - 3*,
3 —1\ /-3 ~-1\ /q +1, g = =1 (mod 12)
(- 0-{0

for every prime q # 2, 3.

(9.1.10) If a = p*, where p # 2 is a prime number, then A = p. There is only one surjective homomorphism
(Z2/pZ)" — {+1},
namely the Legendre symbol; thus 9.1.8 implies that
(7))
q p
for all primes ¢ # 2, p. In other words, 9.1.8 is a strengthening of the Quadratic Reciprocity Law.

9.2 Quadratic Reciprocity Law and sin(z)

In this section we deduce the Quadratic Reciprocity Law from the congruence 0.5.1 (cf. 9.2.3 below) and
the following simple product formula.

(9.2.1) Proposition (Product Formula (P)). Let n € N, 2{n. Fix a subset ¥ C Z/nZ — {0} such that
Z/nZ — {0} = EL.J(—E) (disjoint union). Then

2
<H 2sin 27:) =n. (P)

oED

Proof. The addition formulas for sin(z) imply that

sin(z1 + 22) + sin(z1 — 22) = 2sin(z1) cos(z2)

sin(z; + 29) - sin(z; — 22) = sin?(2;) — sin?(22).

Putting z; = (n — 2)z and 2z, = 2z (thus cos(z2) = 1 — 2sin?(z)), it follows by induction that, for every
n € N, 21 n, there is a polynomial Q,,(t) € Z[t] satisfying

sin(nz) = @y (sin(z)), Qn(t) = (—1)%2"_115” + -+ nt. (9.2.1.1)
As the values of sin(z) at z € 27Z are all roots of Q,,, we obtain from (9.2.1.1) that
Qu(t) =t [] 22 <sin o _ t) (sin o, t> . (9.2.1.2)
n n
Putting ¢ = 0 (and again using (9.2.1.1)) yields the product formula (P).
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(9.2.2) Lemma. Ifn € N, 2 {n and a € Z, then 2"~ !sin 2”7‘1 is an algebraic integer. [In fact, one can
replace in this statement 2"~1 by 2, but this is not important for what follows.]

Proof. This follows from (9.2.1.1-2).
(9.2.3) Proposition (Congruence Formula (C)). Let p # 2 be a prime. Then

Qp(t) = (—1)" 717 (mod pZ[t)). (©)

Proof. As sin(—z) = —sin(z), the polynomial @, (t) is an odd function, hence of the form Q,(t) = tM(t?),
with M (t) € Z[t]. As

T _

cos(pz) = sin(% — pz) = (-1)"% sin(p(§ — 2)) = (-1)"F Qp(sin(§ — 2)) = (—1)"F Qp(cos(2)), (9.2.3.1)

differentiating the relation sin(pz) = Q,(sin(z)) we obtain

p(—1)"T Qy(cos(2)) = peos(pz) = @, (sin(z)) cos(2),
hence

p—1

Q) (sin(z)) = p(~1)"T M(cos(2)?),
QL (1) = p(—1)" T M(1 - ) € pZt]

As Q,(t) = Y a;t' is a polynomial of degree p with integral coefficients, the congruence (9.2.3.2) implies that

(9.2.3.2)

Qp(t) = apt? (mod pZt]).
However,
a, = (—1)"7 271 = (—1)"> (modp),
by (9.2.1.1).

(9.2.4) Corollary. Assume thatsin(«) € Q is an algebraic number (o € C) and O a subring of Q containing
sin(o). If p # 2 is a prime number, then sin(p*«) € O and

sin(p*a) = sin(a)? (mod pO) (p*=(-1)"7 p).

(9.2.5) Corollary. Let p # 2 be a prime number and n € N, (n,2p) = 1. Let Ok, be the ring of algebraic
integers in the field K, = Q(sin 22% | a € Z/nZ). Then, for each a € Z,

sin <2”p*“> _ (m%)p (m0d pOxc, [1/2]).

n
(9.2.6) The congruence 0.5.1

[p*)(x,y) = (2¥,y?) (mod pZ[z,y])

is a simple combination of 9.2.3 with (9.2.3.1). This method of proof is much more complicated then the
one suggested in 0.5.1, but it can be generalized (at least partially) to the lemniscatic case, as we shall see
in 9.4 below.

(9.2.7) In fact, one can deduce the Congruence Formula (C) directly from the Product Formula (P), with
a little help from algebraic number theory:
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(9.2.8) Proposition. Let p # 2 be a prime. Then the polynomial R,(t) = (—1)%1Qp(t)/t € Zt] satisfies
R,(t) ="~ (mod pZ][t]).

Proof. By (9.2.1.2) and 9.2.2, we have

p—1
2
Ry(t) =2r71 H(t —ap), a = sin% € Ok, [1/2].
r=1

The Product Formula (P) from 9.2.1

p—1
R, (0) = 2r-! H Qr =P
r=1

implies that there exists a prime ideal p|p in O, and an index 1 < ro < p — 1 such that p|a,,. For each
r € (Z/pZ)* there exists s € N satisfying 2t s and ¢ = r9s (mod p). Then

Qp = Qs(aro)a Qs(t) € Z[t]7 Qs(o) =0 = p‘ar-
This means that p divides all ., hence
R,(t) = 2P~ 17 (mod pOk, [1/2][t]).
As R,(t) € Z[t], we conclude that
Ry(t) = 2P~ 1P~ =771 (mod pZ][t]).

(9.2.9) Deducing Quadratic Reciprocity Law from (P), (C) and 9.1.3. We are now ready to prove
9.1.6. Fix ¥ as in 9.1.3 and put

2 2mp*
S = H (25in%), S = H (QSin Wf; q) € Ok, [1/2].

oeEX ogEYD

Applying 9.1.3 with a = p* and using the identity sin(—z) = —sin(z), we obtain

s'=T] <2sm 2”;0/> =11 <260 sin 27;0') = <H 6,7)

oED ceX ceY

I1 (2 sin 27?) = (pq*>s. (9.2.9.1)

o'ex
Combined with (C) in the form 9.2.5, this yields
(Z)s — & = (277" 1SP = SP (mod pOr, [1/2]). (9.2.9.2)

According to (P), we have S% = ¢; as ¢ is invertible in Z/pZ C Ok, /pOk, = Ok,[1/2]/pOk,[1/2], it follows
that we can divide (9.2.9.2) by S, obtaining (again using (P))

(%) =971 = (8%)"F = ¢"F (modpOy, [1/2]). (9.2.9.3)
Applying Euler’s criterion (9.1.2.1), we obtain from (9.2.9.3)
P q P q
— ) =(-) (modpOk,[1/2]) = (—) = <—) mod pZ 9.2.9.4
(%) = (1) tmoanor, /2 — (%) = (1) odsa (9:2.9.4

(as both sides are equal to +1 and Ox, N Q = Z). Finally, the congruence (9.2.9.4) between elements of
{£1} must be an equality, since —1 Z 1 (mod pZ).
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(9.2.10) Exercise. Using the values S = 2sin 2F and S’ = 2sin %, show that

(2) s o* 1 1, p = %1 (mod 8)
— = — = (—1) 4 =
p S ~1, p==+3 (mod8).

Conjecture 8.4.9 was stated and proved by Eisenstein in 1850

(9.2.11) What next? Is there a lemniscatic version of all that has been done in 9.1-2? Yes, there is.
In fact, the congruence 8.4.9 was proved by Eisenstein in 1850 in order to deduce from it the Biquadratic
Reciprocity Law ([Sc]).

If Eisenstein could do it, why not you?
The impatient readers may go straight away to sections 9.3-5. Others may want to pause and think

about generalizing everything from 9.1-2 to the lemniscatic case, replacing Z, 27 and sin(z) by Z[i], Q and
sl(z), respectively. They would not regret this adventure!
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9.3 The Product Formula for si(z)

We follow the notation of Section 8 (in particular, L = Z[i] - 2).

(9.3.1) Definition. Let o € Z[i], 2 Na. Fix a subset £, C (LL/L) — {0} satisfying (1L/L) — {0} =
2aU(i80)U(=30)J(—iSy) (thus |Sa| = (Na — 1)/4) and put

Po(ty= [ t—slw)=t ] (" —st*(w) € C[t]

wEXL/L uED,
Q)= [ a-tsiw)= [ a-t'si*(w) eCl]
ue(LL/L)—{0} u€a

(the values of sl(z) at z =u € LL/L are finite, by 9.3.5 below). Note that
Qu(t) =tNP,(1/1). (9.3.1.1)

(9.3.2) Lemma. For each o € Z[i], 2 Na, we have

, P,(sl(z))
144 _
Qalsllz + 510) = <4 v
Proof. This follows from 8.4.3, which reads as follows:
sl(z+ Q) = (9.3.2.1)

(9.3.3) Exercise. For z1, 25 € C,

sl(z1) =sl(z2) < 2z —23€ Ly or z1+22€ Ly +9Q

(note that L = LyU(Ly + Q).

(9.3.4) Lemma. Ifa,( € Z[i] and 21 (Na)(NG), then (Py(t),Qp(t)) =1 (ie. Py(t) and Qg(t) have no
common roots).

Proof. If there were a common root, we would have P,(sl(z)) = Qg(sl(z)) = 0 for some z € C. This would
imply, by 9.3.2-3, that

B(1 ii)Q

Q):ﬁLm(aL+a . ap(l£i)

2

1 1 1+£2

hence a3 € (1 + 4)Z[i], which contradicts the assumption 24 (Na)(Nf3).
(9.3.5) Lemma. div(sl(z)) = (0) 4+ (Q) — () — (15%) € Div(C/Ly).

>7é(2):> QeL=12[ Q,

Proof. This follows from the fact that

div(z) = ((0,1)) + ((0, =1)) = (O4) = (O-) € Div(V(C)).

(9.3.6) Corollary. The function sl : C — P!(C) has simple zeros (resp. simple poles) at z € L =
LVL'J(LV + Q) (resp. at z € L+ %) and no other zeros (resp. poles).

(9.3.7) Proposition. Let a € Z[i], 21 Na. Then there exists a (unique) constant ¢, € C* such that

_ Pa(sl(z))
sl(az) = GREIE)
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Proof. The functions sl(az), P,(sl(z)), and Qn(sl(z)) are Ly-periodic and meromorphic on C/Ly . By 9.3.6,
sl(az) has simple zeros at éL and simple poles at

l<L+ H”Q) Ll
a 2 o 2

(the equality follows from the fact that o — 1 € (1 +i)Z[i]). Similarly, P,(sl(z)) has simple zeros at + L and
poles order Na at L + 1£Q, while Q,(sl(z)) has poles of order (Na — 1) at L + 132Q and simple zeros at
(LL\ L) + 1£Q, hence

div(sl(az)) = div <%> € Div(C/Ly).

Proposition follows.

(9.3.8) Corollary. If o € Z[i], 21 N, then

H sl*(u) = (=1)" T cq -

UEX o

Proof. Differentiating (9.3.7.1) yields
PaQa — Pa@Qy
ca@?
Putting z = 0 (and using the fact that sl’(0) = 1 # 0), we obtain
P (0 a—
Cor = Qa((o)) = [I -stw)t= 0" ] st'(u).

UED uEX o

asl'(az) = (sl(2)) sl'(2). (9.3.8.1)

(9.3.9) Normalization of a. There are 8 residue classes in Z[i] modulo 2 + 2i = —i(1 + )3, of which 4
are invertible. More precisely, the reduction map Z[i] — Z[i]/(2 + 2i¢) induces an isomorphism

{£1, +i} = Z[i)* = (Z[i)/(2 + 20))*.
This implies that, for each o € Z[i] with 2t N, there is a unique element d, € {£1, £i} satisfying
a-dy =1 (mod (2 + 2i)).

This should be compared to the isomorphism

~

(+1) = Z* 5 (Z/4Z)*

and the congruence

(forn € Z,21n).
(9.3.10) Proposition. Let « € Z[i], 21 Na. Then P, (t), Q. (t) € Z[i][t] and ¢, = dq.

Proof. We use induction on Na. Assume first that Na = 1. In this case o € {+1,+:i}, X, =0, P,(t) = t,
Qu(t) =1, sl(az) = asl(z), hence a - ¢, =1 as required.
In general, applying (8.4.2.3) with z; = az and 23 = (1 +4)z and using 9.3.7, we obtain

Pa—l—s(l:l:i) (t) _ (t4 - 1)Poc2<t) + QZCitQQi(t)
e—+1 Ca+e(1ii)Qa+e(1ii) (t) :F2Zt2po¢2 (t) + (t4 - 1)6(21623 (t) .
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By 9.3.4, there is no cancellation of terms between the numerator and the denominator on the L.H.S. As the
degree of the numerator (resp. the denominator) of the R.H.S. is equal to 2Na + 4 (resp. is < 2Na + 2)
and the leading term of each Ps(t) is t™V7, it follows that we have exact equalities between the numerators
and denominators on both sides:

P (1) () Par (140 (8) = (t* = 1) P2(t) + 2ic2t* Q4 (1)
(¢ Q)at1ei)(t) (¢ Q)aasn(t) = F2t*P2(t) + (t* — 1)c2Q%(¢).

Assume that Proposition is already proved for o and a — e(1 + 64) (for fixed ¢,6 = £1). The first line of
(9.3.10.1) implies that P(t) = Paqc(1+64)(t) is a polynomial with coefficients in Q(7). Recall that the contents
of such a polynomial is the principal fractional ideal of Q(4) generated by the coefficients. Multiplicativity of
the contents (“Gauss’ Lemma”) then implies that the contents of P(t) is equal to (1), hence P(t) € Z[i][t].
As the coefficients of Q(t) = Qqe(145i)(t) are the same as those of P(t), only written backwards, we also
have Q(t) € Z[i][t].

Substituting ¢ = 0 to the second line of (9.3.10.1) yields

(9.3.10.1)

Cate(1+6i) " Ca—e(1+6i) = 2. (9.3.10.2)
As
(a4 e(1460)) (o — e(1 +64)) = a® — 26i = —a? (mod (2 + 2i)),

we have

ot e(1460) - da—e(145i) = —da- (9.3.10.3)

As cg = dg for 8 = a, a —€(1+6%) by induction hypothesis, the formulas (9.3.10.2-3) imply that c¢g = d also
for B = a+¢€(1+46%). This concludes the induction step (the exact values of €, § depend on the circumstances).

(9.3.11) Corollary (Product Formula (P)). If o € Z[i], 21 Na, then

IT st = ()" a-d.. (P)

UEX o

In particular, if « =1 (mod (2 + 2i)), then

IT st'w= (1" a.

UEX o

(9.3.12) Corollary. If o € Z[i], 2t Nov and u € L L, then sl(u) is an algebraic integer.

9.4 The Congruence Formula for si(z)

(9.4.1) If o € Z[i] is an irreducible element with 2 t Na, then 0.4.3.0 implies that the residue field
k(o) = Z[i]/oZ[i] is a finite field with Na = p® elements, where p € N is the unique prime number divisible
by a and a =1 (resp. a = 2) if p=1 (mod4) (resp. if p =3 (mod4)).

(9.4.2) Proposition. If a € Z[i], 2t Na, put

Ra(t) = 11 (t—sl(u+$))(t—sl(ut+ )= ] (" —s* (ut+9)) (t* —sl* (u+ ).

ue(1L/L)—{0} UED,

; sl'(2) (9.4.2.1)



and R,(t) € Z[i][t].

Proof. It follows from

that

div(sl'(2) = Y () =2 (429) - 2(1520) € Div(C/Ly).

¢i=1

In other words, sl’(z) has simple zeros at (£ + L)O(% + L) and double poles at Q) + L. As in the proof

of 9.3.7, this implies that
div sl'(az)> _ div (Ra(sl(z))) 7
1 ( SU'(2) Q2(s1(2))

showing that the ratio of the left and right hand sides of (9.4.2.1) is a constant. As the value of the L.H.S.
(resp. the R.H.S.) at z = 0 is equal to 1 (resp. to R4(0)), it remains to prove that R,(0) = 1; this is a
consequence of (9.3.2.1) for z = u + 5}

The formula 9.3.8.1 implies that R, (t) € Q(¢)[t]; it remains to show that each root of R,(t) is an
algebraic integer. Indeed, such a root is of the form si(u + %), where u € éL and ¢ € {1, i}, hence it is
also a root of the polynomial

Pa(t) — dasl(au+ 2)Qu(t) = Pa(t) — dasl(S2)Qa(t) = Pa(t) — daC'Qal(t) = 0

(for some ¢’ € {£1,+:}), which is a monic polynomial with coefficients in Z[i][¢] (by 9.3.10). Proposition
follows.

(9.4.3) Proposition (Congruence Formula (C)). If a € Z[i] is irreducible and 2 N, then

P, (t) =tV (mod o Z[i][t]), Qq(t) =1 (mod oZ[i][t]). (@)
Proof. Let us try to generalize the “elementary” proof of 9.2.3. Combining (9.3.8.1) with (9.4.2.1), we obtain

P.Qo — PaQ, = adoQ*: R, = 0 (mod oZ[i][t]). (9.4.3.1)
As

Poz(t) :tNa"_altNa_l +"'+aNa71ta Qa(t) :afNozfltNa_1 —|—-~-—|—a1t+1, ONa—1 :adom
considering the coefficients of the L.H.S. of (9.4.2.1) modulo «Z[i] yields consecutively

—(Na—1)anyo—1 =0 = ane—1 =0 (mod oZ]i])
—(Na —2)anyo—2 =0 = anq—2 =0 (mod aZ]i])

—(Na—p+1)ana—pt+1 =0 = ana—p+1 =0 (mod oZ]i]),

which proves the claim if Na=p (i.e. if p=1 (mod4)).

It is not clear (at least to the author of these notes) whether one can prove the Proposition by this
method also in the case Na = p?. Instead, we shall generalize the method of proof of 9.2.8. By 9.3.12, the
values sl(u) (u € £L) are contained in the ring of integers Ok of the number field K = Q(i)(sl(u) |u € 1 L).
According to 9.3.7 and 9.3.10, we have
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H sl(u) = acy = ady, do € {£1,+i},
ue(LrL/L)-{0}

which implies that there exists a prime ideal p|a in O and ug € (LL/L) — {0} such that p|si(ug). For each
ue (LL/L) — {0} there exists 3 € Z[i] satisfying 21 N3 and u = Bug (mod L).
As p|si(ug) and Pg(t), Qa(t) € Z[i][t], it follows that
Ps(sl(ug)) = P3(0) =0 (modp),  @s(sl(uo)) = Qp(0) =1 (modp),

hence each non-zero root of P, (t) satisfies

sl(u) = sl(Bug) = Ps(sl(uo))

= 1305(51(u0)) =0 (modp); (9.4.3.2)

thus

Po(t) = t"* (mod pOx[t]),

which implies the same congruence modulo (pOx N Z[i])[t] = aZ[i][t], as required. The desired congruence
for Qq(t) follows from (9.3.1.1).

(9.4.4) Corollary. Assume that o € Z[i] is irreducible, 21 Na, K is a number field containing Q(i) and p
a prime ideal of Ok dividing «. If z € C and sl(z) € Ok, then sl(az) € Ok and

dasl(az) = sl(z)N (mod p)

(with d,, € {£1,+i} defined in 9.3.9).

(9.4.5) Proposition. Assume that o € Z[i] is irreducible, 2t Na. Then

Na—1

Ro(t)= (1=t "2 (mod aZ[i][t]).

Proof. Using the notation from the proof of 9.4.3, the formulas

sl'(z ‘ 1sl'(z
sl(z+3) = l—i—s(lg)(z)7 sl(z49) = 1—51(2()2')

together with (9.4.3.2) imply that, for all u € ¥,
st (u+2) =sl* (u+ L) =sl'(u)' = (1-s1*(v)? =1 (modp),

hence

Na—1 Naoa—1

=(1—t"% (modpOklt]) = Ra(t)=(1—tH >

Ro(t) = (t* = 1) (mod aZ[d][t]).

(9.4.6) Proposition. Assume that o € Z[i] is irreducible, 2 t No; put ¢¥(a) = do - o = 1 (mod (2 + 247)),
where d, (€ {£1,+i}) is as in 9.3.9. Then the group law on the curve V satisfies

[W(a)](z,y) = (=, y™*) (moda)
(this congruence should be interpreted as in 8.4.7). In particular, if « = 1 (mod (2 4 27)), then 8.4.9 holds.

Proof. By 9.3.7, 9.3.10 and (9.4.2.1), we have
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o P.(z) Ru(x)
ale.y) = (daQa@)’ Q2 (@) y) ‘

The congruences 9.4.3,5 then yield

Po(r) Ra(z)
Qa(z) Q%(2)

(@), 9) = ( y) _ @V (1— e y) = (2 5N (mod a),

9.5 Biquadratic Reciprocity Law

Let us try to imitate the theory from 9.1-2 in the context of Gaussian integers Z[i]. Our analytic approach
will disregard many arithmetic aspects of the theory; these can be found, for example, in [Co] or [Ir-Ro].

(9.5.1) Let o € Z[i] be asin 9.4.1. As ( # 1 (mod «) for any ¢ € {—1, £i}, the reduction modulo « induces
an injective homomorphism of abelian groups

{£1,+i} — k(e)* = (Z[i]/aZ]i])*. (9.5.1.1)

As k(a)* is a cyclic group order Na — 1, it follows that Noo = 1 (mod4) and that the following definition
makes sense:

(9.5.2) Definition (Biquadratic residue symbol). If a € Z[i] is irreducible, 241 Na, a € Z[i] and « 1 a,
denote by (g) , the unique element of {%1, £i} satistying the congruence

(g)4 =q" (mod «)

(“generalized Euler’s criterion”).
(9.5.3) Lemma. (i) The biquadratic residue symbol modulo « defines an isomorphism of abelian groups

(_>4 s k() k(o)™ =5 {£1, i}

«

(ii) Ifatab (a,b € Z[i]), then

(2),-0.0), G-0-@0 ()

(iii) f No=p=1 (mod4) and a € Z, pta, then

(g) =1 <= a (modp) € F;‘f < (Fr €Z) 2" =a (modp).
4

(iv) If Na = p? p=3 (mod4) (i.e. o € {&p, +ip}) and a € Z, pt a, then
a
(). ="

Proof. (i),(ii) This follows from the definitions (and the fact that k(a)* is cyclic of order Nao — 1). (iii) is a
special case of (i). Finally, (iv) is a consequence of

p2—1

a * = (a%)p’1 =1 (mod pZ).

(9.5.4) Lemma. Let o € Z[i] be irreducible, 21 Na; let ¥, be as in 9.3.1. Fix a € Z][i] not divisible by «.
For each u € X, there is a unique pair ¢, € {£1,+i} and v’ € X, satisfying au = (,u’; then

H Gu = <g)4'

UuEX o

Proof. The proof of 9.1.3 applies with straightforward modifications.
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(9.5.5) Biquadratic Reciprocity Law. Let o, 3 € Z[i] be irreducible, a1 8 and o = f = 1 (mod (2 + 21)).

Then 5
(0% Na—-1 NB—-1
(5),= (), |

Proof. We shall follow the argument from 9.2.9. Fix ¥, as in 9.3.1 and put

S = H sl(u), S = H sl(Bu) € Ok,

uEX ueX,y

where K = Q(i, sl(u) |u € 2L/L). As in (9.2.9.1), the identity sl((z) = (sl(z) (¢ € {£1, +i}) together with

9.5.4 imply that
<§> 5=
O/ y

Fix a prime ideal p of Ok dividing 5. The congruence formula (C) in the form 9.4.4 then yields

<é> S =5 =5 (modp).
@)y
According to the product formula (P) from 9.3.11,

St=(-1)"Ta

is not divisible by p, hence

(2) =870 = (590 = ()"0 (modp)
4

<§)4 = (—1) <%)4 (mod p).

Both sides of this congruence are elements of {£1, £i}; as p N Z[i] = BZ][i], it follows that

(5)4 R (%)4 (mod BZ[i]).

However, both sides of the latter congruence must be equal, by the injectivity of (9.5.1.1) for 3.

which is in turn congruent to

(9.5.6) Exercise. Irreducible elements « € Z[i] satisfying « =1 (mod (2 + 27)) are the following:

(i) a=wu=+iv, where u,v € Z, Na = u? +v?> = p=1 (mod4) is a prime, v =0 (mod2), u = v+ 1 (mod4)
(the pair u + iv is determined by p uniquely).

(ii) o = —p, where p = 3 (mod4) is a prime.

(9.5.7) Example: Let us compute (%3)4 for « = u £ iv as in 9.5.6(i). Applying 9.5.5, we obtain

(%)~ (%),

There are 8 residue classes in (Z[i]/3Z[i])*, represented by a = £1,4i, £(1 +4), (1 — 7). As

(_13)4 = a2 (mod 3Zli]),

it follows that

(B (G () (5
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hence

(3z € Z) #* = -3 (modp) — <a>4 =1 <= a==1(mod3Z[i]) <
< u==1(mod3),v=0 (mod3) <= v=0(mod6) <= (3a,b€Z) p=a*+ (6b)*
(9.5.8) Exercise. Show that, for a prime number p =1 (mod4), p # 5,
(Fz € Z) 2* =5 (modp) <= (a,b€Z) p=a®+ (10b)°.
(9.5.9) If p is a prime number satisfying p = 3 (mod 4), then the multiplicative group (Z/pZ)* is cyclic of
order p — 1, where (p — 1,4) = 2. This implies that F;4 = F;Q, hence

(EIxGZ)x4Ea(modp) <— (EIyGZ)yQEa(modp) — <%):1 (a€Z,pta).

.. . . . . . _ _ *3 _
(9.5.10) Similarly, if p is a prime number satisfying p = 2 (mod 3), then (p —1,3) = 1, hence F;° = F;. In
other words, the congruence

23 = a (mod p) (9.5.10.1)

has a (unique) solution modulo p for every a € Z.

(9.5.11) On the other hand, if p = 1 (mod 3), then the solvability of (9.5.10.1) depends on a in a non-trivial
way. One can define the Cubic residue symbol and prove the Cubic Reciprocity Law by working with Z[p]
(where p = €2™/3) instead of Z[i] (see [Co], [Ir-Ro]).

(9.5.12) Exercise. Prove the Cubic Reciprocity Law using the function p(z) associated to a lattice L' =
Zp] - Q' for suitable ' (e.g. such that ¢'(2)? = 4p(2)3 — 4).

10. Group law on smooth cubic curves
10.1 The geometric definition of the group law

(10.1.1) Let K beafieldand F = F(X,Y, Z) € K[X,Y, Z] a homogeneous polynomial of degree deg(F') = 3.
We assume that the corresponding cubic (projective) plane curve C' : F' = 0 is smooth (this implies that F'
is irreducible over any extension of K).

Fix a point O € C(K). For P,Q € C(K), we define PxQ,PBHQ € C(K) as in 7.5.6: P *( is the third
intersection point of C' with the line PQ (resp. with the tangent to C at P) if P # Q (resp. P = Q), and

PEHQ=0x(PxQ). (10.1.1.1)
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(10.1.2) Theorem. (C(K),H) is an abelian group with neutral element O.

(10.1.3) Tt is easy to check that P @ lies indeed in C(K), so the only non-trivial point is the associativity
law for P,Q, R € C(K):

(PEQ)BRZPE(QER) (10.1.3.1)

We shall explain in 10.2.6 below how to deduce (10.1.3.1) from a suitable configuration theorem for points
on cubic curves.

(10.1.4) Exercise. Show that the following statements are equivalent:

O is an inflection point of € <= O0+*0 =0 <= (VP C(K)) P+x0O=—-P.

10.2 Configuration theorems

We begin by recalling two classical geometric results.

(10.2.1) Theorem of Pappus. Let Py, Py, P; (resp. Q1,Q2,Qs) be two triples of collinear points in the
plane. Let
Ry = PQ; N P;Q; ({7, 4.k} ={1,2,3})

be the intersection points of the pairs of lines P;Q); and P;(Q);. Then the points Ri, Ro, R are collinear.

P

Q

(10.2.2) Pascal’s Theorem. Let Py, Py, P3,Q1,Q2,Q3 be six distinct points on a conic C. Then the
points Ry, Ro, R (defined as in 10.2.1) are collinear.
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(10.2.3) Theorem of Pappus is a special case of Pascal’s Theorem, when the conic C' is reducible. Pascal’s
Theorem, in turn, is a special case of the following result on cubic curves.

(10.2.4) Theorem of Cayley-Bacharach for cubic curves (weak wersion). Let C;,Cy C P? be
projective cubic curves over an algebraically closed field K = K such that Cy(K) N Cy(K) consists of 9
distinct points Sy, ...,Se € C(K). If D C P? is another projective cubic curve such that Py, ..., Py € D(K),
then Py € D(K).

(10.2.5) Cayley-Bacharach —> Pascal. In the situation of 10.2.2, let

Ci: PiQs U PQ1 U P3Q2, Cy: P3Q1 U P1Q2U PQs, D:CURR,.

Cl ﬁCQ = {P17P27P33Q17Q27Q37R17R27R3}7 CVl N CZ - {RS} S Da
it follows from 10.2.4 that

R3ED:>R3GH-

(10.2.6) Cayley-Bacharach —> associativity of H. In the situation of 10.1.3 (after replacing K by its
algebraic closure), consider the cubic curves

¢, =0(PBQ)UQRUPQBR), C,=0QBR)UPQUR(PEQ), D=C.

DIAGRAM UNDER CONSTRUCTION

C1NCy={0,P,Q,R,P+xQ,PBQ,Q*xR,QBR,S}, S=PQ@BR)NR(PHQ), (10.2.6.1)
it follows from 10.2.4 — assuming that the 9 points in (10.2.6.1) are distinct — that

SeC= P+(QBR)=(PHQ)«xR= PHA(QBR)=(PEQ)BR.

If the points in (10.2.6.1) are not distinct, note that both sides of (10.1.3.1) are given by a morphism
CxCxC — C (cf. 11.1.2.6 below). We have shown that the two morphisms agree on a dense open subset;
as C' is projective (hence separated), they must agree everywhere.

Alternatively, one can appeal to the “strong version” of the Cayley-Bacharach Theorem:

(10.2.7) Theorem of Cayley-Bacharach. Let C, D, E C P? be curves of degrees deg(C) = m, deg(D) =
n, deg(E) < m+n — 3 over an algebraically closed field K. Then:

(i) (weak wersion) If C'(K)N D(K) consists of mn distinct points Py, ..., Pyy, and Py, ..., Ppno1 € E(K),
then Py, € E(K).

(ii) (strong wersion) Assume that the intersection divisor C(K) N D(K) = >_,. ;n;(P;), where each P; €
C(K) is a smooth point of C. If the local intersection multiplicities of C and E satisfy

(C’ E) >{nj7 jEJ_{jO}
TR =

“j—l, J=Jo

for some jo € J, then
(C-E)p;, = njy-
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(10.2.8) Exercise. Deduce Pascal’s Theorem 10.2.2 from Bézout’s Theorem (see [Ki], 3.15).

10.3 Residues

Rather surprisingly, 10.2.7 can be proved using a two-dimensional residue theorem. In this section we shall
indicate the argument for 10.2.7(i). The general theory of multidimensional residues in the analytic context
(i.e. over K = C), as well as a proof of 10.2.7(ii) in this case, can be found in ([Gr-Ha], Ch. 5). The algebraic
theory of residues forms a part of the Grothendieck Duality Theory, which is discussed in [Al-K]] (and also
in [Gr-Ha], Ch. 5).

(10.3.1) Recall the statement of Exercise 1.2.2.2: if F' € C[z] is a polynomial of degree deg(F') > 2 with d
distinct roots z1,...,z4 € C and g € C[z] a polynomial of degree deg(g) < d — 2, then

. g(xy)
I =0. (10.3.1.1)
j; Fr(aj)
One can deduce (10.3.1.1) from the residue formula for the meromorphic differential

9(2)dz 1

on P(C). Ast = 1/z is a local coordinate at the point oo, it follows from

dz = —t~2dt, ords(g) = —deg(g) > 2 —d, orde (1/F) = deg(F) =d
that

orde(w) > (-2)+(2—d)+d >0,

i.e. w is holomorphic at co. The Residue Theorem 1.3.3.10 then gives

d d
0= Z res, (w) = Z res, (w) = Zreszj (w) = Z }g,(zﬂx]j))

zeP1(C) z€C j=1 j=1

A higher-dimensional version of (10.3.1.1) is the following formula:

(10.3.2) Theorem (Jacobi). Let Fy,...,F, € C[zy,...,x,] be polynomials of degrees deg(F;) =d; > 1.
Assume that the hypersurfaces Z; = {F; = 0} C C™ intersect at exactly d = dy ---d,, distinct points
P,eC" (1< a<d). Let g € Clzy,...,x,] be a polynomial of degree deg(g) < (dy +---+d,) — (n + 1).

Then .,
Z g(Pa) -0
a=1 JF(PO‘) ,

where Jp = det(0F;/0x;) is the Jacobian of F' = (Fy,...,F,): C" — C".

Proof (sketch). Firstly, the n-dimensional variant of Bézout’s Theorem implies that the local intersection
multiplicity of the hypersurfaces Z; (j = 1,...,n) at each point P, is equal to one, which is equivalent to the
non-vanishing of Jp(P,). Secondly, the assumption on deg(g) is equivalent to the fact that the meromorphic
differential n-form
g(x)dxy A -+ Ndxy, glx) dFy A--- NdF,
w= =
Fi(z)---F,(x)  Jp(x) F---F,

TL

on P"™(C) has no pole along the hyperplane at infinity P*(C) — C™. The n-dimentional residue theorem

then implies

d dFy A+ NdF,
-3 e z s (F ) z 2

where the last equality follows from the fact that Fl, ..., F, form a system of local coordinates at each P,.
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(10.8.3) Corollary. If g(P,) =0 fora=1,...,d — 1, then g(P;) = 0.

(10.3.4) In particular, for n = 2 we obtain the variant 10.2.7(i) of the Cayley-Bacharach Theorem with
CliF1:O7CQZF2:0,E2g:O.

(10.3.5) As explained in ([Gr-Ha], 5.2), a variant of the above calculation can be used to prove 10.2.7(ii).

(THIS IS VERSION 20,/9/2004)
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