
ELLIPTIC FUNCTIONS AND ELLIPTIC CURVES

(A Classical Introduction)

Jan Nekovář

0. Introduction

(0.0) Elliptic curves are perhaps the simplest ‘non-elementary’ mathematical objects. In this course we
are going to investigate them from several perspectives: analytic (= function-theoretic), geometric and
arithmetic.

Let us begin by drawing some parallels to the ‘elementary’ theory, well-known from the undergraduate
curriculum.

(0.0.1) Function theory: (below, R(x, y) is a rational function)

Elementary theory This course

arcsin, arccos elliptic integrals∫
R(x,

√
f(x)) dx, deg(f) = 2

∫
R(x,

√
f(x)) dx, deg(f) = 3, 4

sin, cos elliptic functions
(periodic with period 2π) (doubly periodic with periods ω1, ω2)

(0.0.2) Geometry:

Elementary theory This course

conics (e.g. circle, parabola ...) elliptic curves
g(x, y) = 0, deg(g) = 2 g(x, y) = 0, deg(g) = 3

(e.g. y2 = f(x), deg(f) = 3)

families of elliptic curves
(parametrized by modular functions)

(0.0.3) Arithmetic:

Elementary theory This course

Pythagorean triples rational solutions of
a2 + b2 = c2 (a, b, c ∈ N) g(x, y) = 0, deg(g) = 3

division of the circle (roots of unity) division values of elliptic functions
cyclotomic fields two-dimensional Galois representations

complex multiplication

(0.0.4) Elementary theory from a non-elementary viewpoint. In the rest of this Introduction we are
going to look at the left hand columns in 0.0.1-3 from an ‘advanced’ perspective, which will be subsequently
used to develop the theory from the right hand columns.

c© Jan Nekovář 2004
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0.1. The circle

Consider the unit circle

C : x2 + y2 = 1

with a distinguished point O = (1, 0).
(0.1.0) Transcendental parametrization of the circle. The points on C can be parametrized by the
(oriented) arclength s measured from the point O:

O

P

s

The formulas
(ds)2 = (dx)2 + (dy)2, 0 = d(x2 + y2) = 2(x dx+ y dy)

yield

dx = −y
x
dy, (ds)2 =

(dy)2

x2
, ds =

dy

x
= −dx

y
,

hence

s =
∫ y

0

dt√
1− t2

, (0.1.0.0)

with the inverse function

y = y(s) = sin(s)

and

x = x(s) =
dy

ds
= cos(s),

i.e.

P = (x(s), y(s)) = (cos(s), sin(s)).

(0.1.1) Addition of points on C (“abelian group law”). We can use the parametrization from (0.1.0)
to add points on C by adding their corresponding arclengths from O. In other words, if we are given two
points

Pj = (xj , yj) = (cos(sj), sin(sj)) (j = 1, 2)

on C corresponding to s1 resp. s2, we let

P = P1 � P2 = (cos(s1 + s2), sin(s1 + s2))

be the point of C corresponding to s1 + s2. This makes the points of the circle C into an abelian group with
neutral element O.
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The addition formulas

cos(s1 + s2) = cos(s1) cos(s2)− sin(s1) sin(s2)
sin(s1 + s2) = cos(s1) sin(s2) + cos(s2) sin(s1)

(0.1.1.0)

for the transcendental functions cos, sin becomes algebraic when written in terms of the coordinates of the
points on C:

(x1, y1)� (x2, y2) = (x1x2 − y1y2, x1y2 + x2y1) (0.1.1.1)

(and similarly for the inverse −(x, y) = (x,−y)). If we consider (0.1.0.0) as a definition of the (inverse of)
sin, then the formulas (0.1.1.0-1) can be written as∫ y1

0

dt√
1− t2

+
∫ y2

0

dt√
1− t2

=
∫ y3

0

dt√
1− t2

, (0.1.1.2)

where
y3 = y1

√
1− y2

2 + y2

√
1− y2

1 . (0.1.1.3)

Let us repeat the key point once again: (0.1.1.2) is an addition formula for the transcendental function
arcsin(y) (defined as the integral of the algebraic function 1/

√
1− t2), given by an algebraic rule (0.1.1.3).

Is this just an accident, or a special case of some general principle? We shall come back to this question
several times during the course.
(0.1.2) Geometric description of the group law on C. There is a simple geometric way to construct
the point P = P1 � P2:

O

P C

P

P
1

2

draw a line through O parallel to the line P1P2; its second intersection with C (apart from O) is P = P1�P2.

(0.1.3) Exercise. Why is the statement in 0.1.2 true? What happens if P1 = P2?

0.2. A rigorous formulation

Attentive readers will have noticed that the discussion in Sect. 0.1 was not completely correct. The problem
lies in the square root

√
1− y2, whis is not a single-valued function. How does one keep track of the correct

square root?
(0.2.0) The idea of a Riemann surface. The solution, proposed by Riemann, is very simple: one works,
in the complex domain, with both square roots simultaneously. This means that the set of the real points
of the circle C

C(R) = {(x, y) ∈ R2 |x2 + y2 = 1}

(previously denoted simply by C) should be considered as a subset of its complex points

C(C) = {(x, y) ∈ C2 |x2 + y2 = 1} :
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O

The set C(C) is a “Riemann surface”, realized as a (ramified) two-fold covering of C by the projection
map p2(x, y) = y. The function p1(x, y) = x (resp. the differential ω = dy/x = −dx/y) is a well-defined
(i.e. single-valued) holomorphic function (resp. holomorphic differential) on C(C), replacing the multivalued
function

√
1− y2 (resp. differential dy/

√
1− y2) from 0.1.

Informally, a Riemann surface is an object on which one can define holomorphic (resp. meromorphic)
functions and differentials in one complex variable. Riemann surfaces are natural domains of definitions of
(holomorphic) functions that would otherwise be multivalued when considered as functions defined on open
subsets of C (such as

√
1− y2 in the above example). We shall recall basic concepts of this theory in I.3

below.

(0.2.1) The Abel-Jacobi map. In our new formulation, the integral (0.1.0.0) should be replaced by∫ P

O

ω =
∫ P

O

dy

x
, (0.2.1.0)

where P = (xP , yP ) ∈ C(C) is a fixed complex point on C. At this point another ambiguity appears: the
integral (0.2.1.0) depends not just on the point P , but also on the choice of a path (say, piece-wise infinitely
differentiable)

a : O − P.

What happens if we choose another path a′ : O − P :

P

a

a’

O

The composite path a ? (−a′), which is obtained by going first from O to P along a and then from P to O
along −a′ (= a′ in the opposite direction), is then a closed path. As

dω = 0

(which is true for every holomorphic differential on every Riemann surface), Stokes’ theorem∫
∂A

ω =
∫
A

dω = 0

implies that the integral
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∫
b

ω

along any closed path b (more generally, along any differentiable 1-cycle b) depends only on the homology
class of b in the homology group

[b] ∈ H1(C(C),Z).

In our case,

H1(C(C),Z) = Z[γ]

is an infinite cyclic group generated by the homology class of the cycle γ = C(R) (say, with the positive
orientation). This means that

[a ? (−a′)] = n[γ]

for some integer n ∈ Z, hence the ambiguity of the integral (0.2.1.0)∫
a

ω −
∫
a′
ω = n

∫
γ

ω = 2πn ∈ 2πZ

is an integral multiple of the ‘period of ω along γ’, namely∫
γ

ω = 2
∫ 1

−1

dt√
1− t2

= 2π.

To sum up, the integral (0.2.1.0) is well-defined only modulo the group of periods

{
∫
b

ω | [b] ∈ H1(C(C),Z)} = 2πZ.

The corresponding ‘Abel-Jacobi map’

C(C) −→ C/2πZ, P 7→
∫ P

O

ω (mod 2πZ) (0.2.1.1)

is then a complex variant of arcsin.

(0.2.2) Exercise. Show that the map (0.2.1.1) defines a bijection C(C) ∼−→ C/2πZ (resp. C(R) ∼−→
R/2πZ), the inverse of which is given by the map s 7→ (cos(s), sin(s)).

(0.2.3) A useful substitution. Using the complex variable z = x + iy, one can identify the set of real
points C(R) of the circle with the subset

{z ∈ C∗ | zz = 1} ⊂ C∗

of the multiplicative group of C. The discussion from 0.2.1 then applies to C∗ and the holomorphic differential
dz/z on C∗, with period ∫

γ

dz

z
= 2πi

(as H1(C∗,Z) = Z[γ]). The corresponding variant of (0.2.1.1) is the (bijective) logarithm map

log : C∗ −→ C/2πiZ, P 7→
∫ P

1

dz

z
(mod 2πiZ), (0.2.3.0)

which restricts to a bijection between C(R) and 2πiR/2πiZ and whose inverse is given by exp.
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0.3. Geometry of the circle

In this section we consider only geometric properties of C involving rational functions of the coordinates x
and y, not the transcendental parametrization by (cos(s), sin(s)).
(0.3.0) Projectivization of C. Writing the affine coordinates x, y in the form x = X/Z, y = Y/Z, where
X,Y, Z are the homogeneous coordinates in the projective plane P2(C), we embed the affine circle C into
its projectivization

C̃ : X2 + Y 2 = Z2,

which is obtained from C by adding two points at infinity

C̃(C) ∩ {Z = 0} = {(1 : ±i : 0)}.

(0.3.1) Circle = line. This is one of the small miracles that occur in the projective world. In fact, much
more is true (if you are not sure about the precise definitions, see I.3.7 below):

(0.3.1.0) Exercise. If V ⊂ P2
F is a smooth projective conic over a field F , O ∈ V (F ) an F -rational point

of V and L ⊂ P2
F an F -rational line not passing through O, then the central projection from O to L defines

an isomorphism of curves (over F )
p : V ∼−→ L ( ∼−→ P1

F )

L

V

O

P
p(P)

(0.3.1.1) Example. F = Q, V = C̃ : X2 + Y 2 = Z2, L : X = 0:

C

L

O=(1,0)

P=(x,y)

p(P)=(0,t)

As

x2 + y2 = 1, y = (1− x)t,

a short calculation yields
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x =
t2 − 1
t2 + 1

, y =
2t

t2 + 1
, t =

y

1− x
=

1 + x

y
. (0.3.1.1.0)

These formulas define p on the affine parts of C̃ resp. L; using homogeneous coordinates x = X/Z, y = Y/Z
and t = u/v, we see that the inverse of p is given by the formula

p−1 : (u : v) 7→ (X : Y : Z) = (u2 − v2 : 2uv : u2 + v2).

Note that p induces a bijection between C(C)−{O} and C−{±i}, sends O to the point at infinity (t =∞)
of L and p((1 : ±i : 0)) = ∓i.

(0.3.1.2) Exercise. Can one generalize 0.3.1.0 to higher dimensions, e.g. to the case of smooth quadrics
V ⊂ P3

F (such as X2
0 +X2

1 +X2
2 = X2

3 , if 2 is invertible in F )?

0.4. Pythagorean triples

It is time to turn our attention to number theory (at last!).

(0.4.0) A Pythagorean triple a, b, c is a solution of the diophantine equation

a2 + b2 = c2, (a, b, c ∈ N);

it is primitive if gcd(a, b, c) = 1. The first few primitive Pythagorean triples are

32 + 42 = 52

52 + 122 = 132

82 + 152 = 172

72 + 242 = 252.

(0.4.0.0)

Each Pythagorean triple defines a rational point (a/c, b/c) ∈ C(Q) on the circle. Conversely, a rational point
(x, y) ∈ C(Q) with xy 6= 0 defines a unique primitive Pythagorean triple a, b, c satisfying (|x|, |y|) = (a/c, b/c).

The set of (primitive) Pythagorean triples has a well-known explicit description, which can be deduced
by many different methods. We shall recall only three of them:

(0.4.1) Geometric method. One can explicitly describe the rational points on C as follows.

(0.4.1.0) The isomorphism p−1 : P1 ∼−→ C̃ from 0.3.1.1 is defined over Q, hence induces a bijection between
the sets of rational points

p−1 : P1(Q) = Q ∪ {∞} ∼−→ C̃(Q) = C(Q),

given by the formula

p−1 : t =
u

v
7→
(
u2 − v2

u2 + v2
,

2uv
u2 + v2

)
=
(
t2 − 1
t2 + 1

,
2t

t2 + 1

)
(0.4.1.0.0)

(and p−1(∞) = O = (1, 0)).

(0.4.1.1) Exercise. Show that (0.4.1.0.0) yields the following parametrization (up to a permutation of a
and b) of all Pythagorean triples:

a = (u2 − v2)w, b = 2uvw, c = (u2 + v2)w, u, v, w ∈ N, u > v, gcd(u, v) = 1.

Where does the permutation of a and b enter the picture?

(0.4.2) Algebraic method. The following statement is a special case of “Hilbert’s Theorem 90”.
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(0.4.2.0) Exercise. If L/K is a finite Galois extension of fields with Gal(L/K) cyclic, then the sequence

L∗
1−σ−−−−→L∗

NL/K−−−−→K∗,

where σ is a generator of Gal(L/K), is exact. In other words, for λ ∈ L∗,

λ · σ(λ) · σ2(λ) · · ·σn−1(λ) = 1 ⇐⇒ (∃µ ∈ L∗) λ =
µ

σ(µ)
.

(0.4.2.1) Special case: K = Q, L = Q(i), λ = x+ iy (x, y ∈ Q), σ(λ) = x− iy. Then

NL/K(λ) = x2 + y2 = 1 ⇐⇒ (∃u, v ∈ Q) λ =
u+ iv

u− iv
,

which is equivalent to

x+ iy =
(u+ iv)2

(u− iv)(u+ iv)
=
u2 − v2

u2 + v2
+ i

2uv
u2 + v2

,

which is nothing but the formula (0.4.1.0.0)! This observation leads to an elegant description

a+ ib = (u+ iv)2 (0.4.2.1.0)

of all primitive Pythagorean triples (up to a permutation of a and b):

(2 + i)2 = 3 + 4i

(3 + 2i)2 = 5 + 12i

(4 + 3i)2 = 7 + 24i

(4 + i)2 = 15 + 8i.

(0.4.2.1.1)

(0.4.3) Arithmetic method. This is based on the factorization

(a+ ib)(a− ib) = a2 + b2 = c2.

(0.4.3.0) Arithmetic of Gaussian integers. The ring

Z[i] = {x+ iy |x, y ∈ Z}

is a unique factorization domain with units

Z[i]∗ = {±1,±i}.

A prime number p factors into a product of irreducible factors in Z[i] as follows:

(i) 2 = (−i)(1 + i)2, with 1 + i irreducible.
(ii) If p ≡ 3 (mod 4), then p is irreducible.
(iii) If p ≡ 1 (mod 4), then p = ππ, where π = u+ iv, u2 + v2 = p; both π and π are irreducible.

(0.4.3.1) Exercise. If a, b, c is a primitive Pythagorean triple, then c is odd and gcd(a+ ib, a− ib) = 1 in
Z[i]. Deduce that either a+ ib = d2 or b+ ia = d2 is a square of some d ∈ Z[i]; writing d = u+ iv, we obtain
again (0.4.2.1.0).

(0.4.4) Do the methods from 0.4.1-3 generalize? Try to apply them to the following questions.
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(0.4.4.0) Exercise. Suppose that we replace the square in (0.4.2.1.0) by a higher power. What is the
arithmetical meaning of the numbers we obtain, such as

(2 + i)3 = 2 + 11i, (3 + 2i)3 = −9 + 46i ?

Are they again solutions of some diophantine equations? If yes, are there any other solutions?

(0.4.4.1) Exercise. Let d ∈ Z,
√
d 6∈ Z. Find all solutions of

x2 − dy2 = 1 (x, y ∈ Q).

(0.4.4.2) Exercise. Can one use 0.3.1.2 to describe explicitly all rational points on the n-dimensional unit
sphere, i.e. all solutions of

x2
0 + x2

1 + · · ·+ x2
n = 1 (x0, . . . , xn ∈ Q)?

0.5. The group law on the circle revisited

(0.5.0) Multiplication formulas for the group law. For an integer n ≥ 1, put

[n](x, y) = (x, y)� · · ·� (x, y)︸ ︷︷ ︸
n factors

and

[−n](x, y) = [n](x,−y)

(= multiplication by n (resp. −n) in the sense of the group law on C). The expression [n](x, y) is given by
a pair of polynomials of degree n with integral coefficients, the first few of which are

[1](x, y) = (x, y)

[2](x, y) = (2x2 − 1, 2xy)

[3](x, y) = (4x3 − 3x, 3y − 4y3)

[4](x, y) = (8x4 − 8x2 + 1, 8x3y − 4xy)

[5](x, y) = (16x5 − 20x3 + 5, 16y5 − 20y3 + 5y).

Note that

[−3](x, y) ≡ (x3, y3) (mod 3), [5](x, y) ≡ (x5, y5) (mod 5).

The following exercise shows that this is no accident.

(0.5.1) Exercise (Congruences for the multiplication). Let p > 2 be a prime; put p∗ = (−1)(p−1)/2p.
Then

[p∗](x, y) ≡ (xp, yp) (mod p).

[Hint: use the substitution z = x+ iy.]

(0.5.2) Exercise. (i) For every (commutative) ring A, the formula (0.1.1.1) defines a structure of an
abelian group on

C(A) = {(x, y) ∈ A2 |x2 + y2 = 1}.

(ii) If 2 is invertible in A and there exists λ ∈ A satisfying λ2 + 1 = 0, then the formula

(x, y) 7→ z = x+ λy
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defines an isomorphism of abelian groups
C(A) ∼−→ A∗

(here A∗ denotes the multiplicative group of invertible elements of A).
(iii) Assume that F is a field of characteristic char(F ) 6= 2 over which the polynomial λ2 + 1 is irreducible.
For a fixed root

√
−1 of λ2 + 1 = 0 (contained in some extension of F ), the map

(x, y) 7→ z = x+
√
−1y

defines an isomorphism of abelian groups

C(F ) ∼−→ Ker
(
NF (

√
−1)/F : F (

√
−1)∗ −→ F ∗

)
;

the latter group is isomorphic to F (
√
−1)∗/F ∗ [Hint: see (0.4.2.0).]

(0.5.3) Exercise (Structure of C(F ) for finite fields). Let p > 2 be a prime and Fp an algebraic closure
of Fp.
(i) Describe the structure of C(Fp) as an abstract abelian group.
(ii) For each n ≥ 1, describe the structure of C(Fpn), using 0.5.2.

(iii) Describe the structure of C(Fpn), using (i) and 0.5.1. [Hint: F∗pn = {a ∈ F
∗
p | ap

n−1 = 1}.]
(iv) Show that

exp

( ∞∑
n=1

|C(Fpn)|
n

Tn

)
=


1−T
1−pT , if p ≡ 1 (mod 4)

1+T
1−pT , if p ≡ 3 (mod 4).

(0.5.4) Exercise (Structure of C(Q)). (i) The torsion subgroup of C(Q) is equal to

C(Q)tors = {(±1, 0), (0,±1)}.

(ii) The quotient group C(Q)/C(Q)tors is a free abelian group with countably many generators. Can one
explicitly describe a set of its (free) generators? [Hint: combine 0.4.2 with 0.4.3.0.]

0.6. Galois theory

(0.6.0) Division of the circle (Gauss). For every integer n ≥ 1, the points dividing the circumference
of the (real) circle C(R) into n equal parts

O

(n=6)

form the n-torsion subgroup of C

C(R)n = {(x, y) ∈ C(R) | [n](x, y) = O} (= C(C)n). (0.6.0.0)

Under the transcendental parametrization

(cos, sin) : R/2πZ ∼−→ C(R),
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the subgroup C(R)n corresponds to 1
n2πZ/2πZ; the formula (0.6.0.0) implies that the coordinates of points

in C(R)n are algebraic numbers of degree ≤ n.
It is more convenient to use the isomorphism 0.2.3 (+ 0.5.2)

C(C) ∼−→ C∗, (x, y) 7→ z = x+ iy,

under which C(R)n = C(C)n corresponds to the group of n-th roots of unity µn = µn(C); here we use the
notation

µn(A) = {x ∈ A |xn = 1}

for any (commutative) ring A.
The field Q(µn) generated over Q by the elements of µn is, in fact, generated by any primitive n-

th root of unity (i.e. a generator of the cyclic group µn). These primitive roots of unity form a subset
µ0
n = {ζa | a ∈ (Z/nZ)∗} ⊂ µn (for fixed ζ ∈ µ0

n) of cardinality ϕ(n); they are the roots of the n-th
cyclotomic polynomial

Φn(X) =
∏
ζ∈µ0

n

(X − ζ).

The first few polynomials Φn(X) are equal to

Φ1(X) = X − 1, Φ2(X) = X + 1, Φ3(X) = X2 +X + 1, Φ4(X) = X2 + 1,
Φ5(X) = X4 +X3 +X2 +X + 1, Φ6(X) = X2 −X + 1, Φ12(X) = X4 −X2 + 1.

(0.6.1) Exercise (Properties of Φn). (i) The polynomial Φn(X) is equal to

Φn(X) =
∏
d|n

(Xn/d − 1)µ(d),

where µ(d) is the Möbius function

µ(d) =

{
0, if d is not square-free

(−1)l, if d is a product of l ≥ 0 distinct primes.

(ii) The polynomial Φn(X) has coefficients in Z.
(iii) If n = pk is a prime power, then Φn(X) is irreducible over Q. [Hint: Consider Φpk(X + 1).]
*(iv) If n = pk is a prime power and p - m, then Φn(X) is irreducible over Q(µm). [Hint: Combine the
method from (iii) with elementary algebraic number theory.]
(v) For each n ≥ 1, Φn(X) is irreducible over Q.

(0.6.2) The Galois representation on µn. It follows from 0.6.1(ii) and (iv) that Q(µn) is the splitting
field of Φn(X) (hence Galois) over Q, of degree

[Q(µn) : Q] = deg(Φn) = |µ0
n| = |(Z/nZ)∗| = ϕ(n).

The action of any field automorphism σ ∈ Gal(Q(µn)/Q) of Q(µn) (over Q) preserves µn and commutes
with its group law (= multiplication). It follows that its action on µn is given by

σ : ζ 7→ ζa (∀ζ ∈ µn)

for some element

a = χn(σ) ∈ (Z/nZ)∗ = GL1(Z/nZ).
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The corresponding map

χn : Gal(Q(µn)/Q) −→ GL1(Z/nZ)

(the “cyclotomic character”) is a homomorphism of groups; it is perhaps the simplest example of a Galois
representation.

The Galois theory of the extension Q(µn)/Q can be summed up by the statement that χn is an isomor-
phism (it is injective almost by definition, and its domain and target have the same number of elements).
(0.6.3) Kummer theory. Suppose that F is a field containing µn (i.e. the set µn(F ) = {x ∈ F |xn = 1}
has n elements) and a ∈ F ∗. Fix a separable closure F sep of F and an element b = n

√
a ∈ F sep satisfying

bn = 1. Then the formula

σ 7→ σ( n
√
a)/ n
√
a

defines a homomorphism of groups

δa : Gal(F sep/F ) −→ µn(F ),

which does not depend on the choice of b and whose kernel is equal to Gal(F sep/F ( n
√
a)). The map

a 7→ δa

defines an homomorphism of abelian groups

δ : F ∗ −→ Hom(Gal(F sep/F ), µn(F ))

with kernel

Ker(δ) = F ∗n.

The special case of Hilbert’s Theorem 90 stated in 0.4.2.0 implies that the map δ is surjective, hence induces
an isomorphism of abelian groups

δ : F ∗/F ∗n ∼−→ Hom(Gal(F sep/F ), µn(F )). (0.6.1.0)

In fact, it is possible to give a unified interpretation of both the logarithm map (0.2.3.0) and the isomorphism
(0.6.1.0).
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I. Elliptic Integrals and Elliptic Functions

This chapter covers selected topics from classical theory of (hyper)elliptic integrals and elliptic functions.
It is impossible to give an exhaustive list of references for this enormous subject. For general theory (and
practice), the following books can be useful: [McK-Mo], [La], [Web].

1. Elliptic Integrals

By definition, an elliptic (resp. hyperelliptic) integral is an expression of the form

I =
∫
R(x,

√
f(x)) dx,

where R(x, y) ∈ C(x, y) is a rational function and f(x) ∈ C[x] a square-free polynomial of degree n = 3, 4
(resp. n > 4).

If n = 1, 2, the integral is an elementary function; for example, if f(x) = 1 − x2, then the substitution
x = (t2 − 1)/(t2 + 1) from 0.3.1.2 transforms I into an integral of a rational function of t.

Where do (hyper)elliptic integrals occur in nature? We begin by two geometric examples.

1.1 Arclength of an ellipse

(1.1.1) An ellipse (x
a

)2

+
(y
b

)2

= 1 (a ≥ b > 0)

y

a
b

x

can be parametrized by x = a cos θ, y = b sin θ. Its arclength s satisfies

(ds)2 = (dx)2 + (dy)2 = (a2 sin2 θ + b2 cos2 θ)(dθ)2 = a2(1− k2 cos2 θ)(dθ)2,

where k2 = 1− b2/a2. Normalizing the long axis of the ellipse by taking a = 1, we have b =
√

1− k2 and

dx = − sin θ dθ, (dx)2 = (1− x2)(dθ)2, (ds)2 =
1− k2x2

1− x2
(dx)2,

hence

s =
∫ √

1− k2x2

1− x2
dx =

∫
1− k2x2√

(1− x2)(1− k2x2)
dx.

1.2 Arclength of a lemniscate

(1.2.1) Lemniscate. Recall that, given two distinct points F1, F2 in the plane, the lemniscate with the
foci F1, F2 is the set of points P in the plane satisfying
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|F1P | · |F2P | = |F1O| · |F2O|, (1.2.1.1)

where O is the midpoint of the segment F1F2.

FO1 2
F

Choosing a coordinate system in which O = (0, 0), F1 = (−a, 0), F2 = (a, 0), the (square of the) equation
(1.2.1.1) for the point P = (x, y) can be written as

a4 = ((x+ a)2 + y2)((x− a)2 + y2) = (x2 + y2 + a2)2 − (2ax)2,

which is equivalent to

(x2 + y2)2 = 2a2(x2 − y2).

For a = 1/
√

2 we obtain a particularly nice equation

(x2 + y2)2 = x2 − y2,

which becomes

r2 = cos 2θ (1.2.1.2)

in the polar coordinates x = r cos θ, y = r sin θ.
(1.2.2) Arclength. The equation (1.2.1.2) implies that rdr = − sin(2θ)dθ, hence

r2(dr)2 = (2 sin2 θ)(2 cos2 θ)(dθ)2 = (1− r2)(1 + r2)(dθ)2 = (1− r4)(dθ)2.

It follows that the arclength s of the lemniscate satisfies

(ds)2 = (dr)2 + r2(dθ)2 = (dr)2

(
1 +

r4

1− r4

)
=

(dr)2

1− r4
,

hence

s =
∫

dr√
1− r4

. (1.2.2.1)

1.3 The lemniscate sine

(1.3.1) The sine function is defined as the inverse of the integral (0.1.0.0) that computes the arclength of
the unit circle. In a similar vein, the ‘sine of the lemniscate’ sl is defined as the inverse function to the
integral (1.2.2.1). In other words, if

s =
∫ r

0

dt√
1− t4

, (1.3.1.1)

then we put
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r = sl(s),

which corresponds to the following picture:

r
s

As in 0.2, the integral (1.3.1.1) can be interpreted as an integral on the Riemann surface

V (C) = {(x, y) | y2 = 1− x4}

associated to the curve

V : y2 = 1− x4. (1.3.1.2)

As a result, the function sl(s) will make sense also for complex values of s.
The substitution t := −t (resp. t = it) implies that

sl(−s) = −sl(s), sl(is) = i sl(s). (1.3.1.3)

Denoting by

Ω
2

=
∫ 1

0

dt√
1− t4

the length of the ‘quarter-arc’ of the lemniscate between (0, 0) and (1, 0), then

sl(
Ω
2

) = 1, sl(Ω) = 0, sl(Ω + s) = sl(−s) = −sl(s). (1.3.1.4)

(1.3.2) The previous discussion should be compared to the corresponding picture for the circle, given by
the equation

r = sin θ

in polar coordinates (this is a slightly different parametrization than in 0.1):

(0,0)

(0,1)

r
s

In this case
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(ds)2 = (dr)2 + r2(dθ)2 = (cos2 θ + sin2 θ)(dθ)2 = (dθ)2 =
(dr)2

1− r2
,

hence

s =
∫ r

0

dt√
1− t2

= θ, r = sin(s),
π

2
=
∫ 1

0

dt√
1− t2

sin(
π

2
) = 1, sin(π) = 0, sin(π + s) = sin(−s) = − sin(s).

(1.3.3) The main difference between the functions sin and sl is the following: the sine function is periodic

sin(s+ 2π) = sin(s)

with periods 2πZ, while the formulas (1.3.1.3-4) imply that

sl(s+ 2Ω) = sl(s)
sl(s+ 2iΩ) = i sl(s/i+ 2Ω) = i sl(s/i) = sl(s),

hence sl is doubly periodic, with periods (at least) in the square lattice 2ΩZ + 2iΩZ.

1.4 Fagnano’s doubling formula for sl

(1.4.1) Recall that integrals of the form
∫
R(x,

√
1− x2) dx can be computed by the substitution

x =
2t

1 + t2
, 1− x2 =

(
1− t2

1 + t2

)2

. (1.4.1.1)

The lemniscatic integral (1.3.1.1) involves
√

1− r4 instead of
√

1− x2, so it would be fairly natural to try
to apply the substitution (1.4.1.1) with

x = r2, t = u2,

i.e. change the variables by

r2 =
2u2

1 + u4
, r =

√
2u√

1 + u4
, 1− r4 =

(
1− u4

1 + u4

)2

.

It follows that

2rdr =
4u(1− u4)
(1 + u4)2

du, dr =
√

2(1− u4)
(1 + u4)3/2

du,

hence

dr√
1− r4

=
√

2
du√

1 + u4
(1.4.1.1)

This is almost the same integral as before, except for the factor
√

2 and a change of sign inside the square
root. In order to get back the minus sign, we make another substitution

u = e2πi/8v =
1 + i√

2
v (=⇒ u4 = −v4),

which yields
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r =
(1 + i)v√

1− v4
, 1− r4 =

(
1 + v4

1− v4

)2

(1.4.1.2)

and

dr√
1− r4

= (1 + i)
dv√

1− v4
. (1.4.1.3)

(1.4.2) Doubling formula for the sine. An elementary variant of (1.4.1.2-3) is provided by the doubling
formula for the sine function: if u = sin(s), then

sin(2s) = 2u
√

1− u2. (1.4.2.1)

The substitution

y = 2u
√

1− u2

therefore yields

y2 = 4u2(1− u2), 1− y2 = (1− 2u2)2, 2ydy = 8u(1− 2u2) du,

hence

dy√
1− y2

= 2
du√

1− u2
. (1.4.2.2)

Integrating the formula (1.4.2.2), we obtain the identity∫ y

0

dt√
1− t2

= 2s = 2
∫ u

0

dt√
1− t2

we started with.

(1.4.3) Complex multiplication by 1 + i. In the similar vein, the formula (1.4.1.3) can be integrated
into ∫ r

0

dt√
1− t4

= (1 + i)x = (1 + i)
∫ v

0

dt√
1− t4

,

where

x =
∫ v

0

dt√
1− t4

;

the first identity in (1.4.1.2) then can be rewritten as

sl((1 + i)x) =
(1 + i)sl(x)√

1− sl4(x)
. (1.4.3.1)

This formula, which should be compared with (1.4.2.1), is the simplest non-trivial example of what is usually
referred to as “complex multiplication”.

(1.4.4) The doubling formula. In order to obtain a formula for multiplication by 2 = (1 + i)(1− i), we
iterate the substitution (1.4.1.2), with i replaced by −i:

v =
(1− i)w√

1− w4
, 1− v4 =

(
1 + w4

1− w4

)2

,
dv√

1− v4
= (1− i) dw√

1− w4
,

which yields
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r =
(1 + i)(1− i)w√
1− v4

√
1− w4

=
2w
√

1− w4

1 + w4
,

dr√
1− r4

= 2
dw√

1− w4
.

This can be rewritten as

sl(2x) =
2sl(x)

√
1− sl4(x)

1 + sl4(x)
, (1.4.4.1)

which is Fagnano’s doubling formula.

(1.4.5) Addition formula. Is there an addition formula for sl(x1 +x2) in terms of sl(x1) and sl(x2) which
would specialize to (1.4.4.1) if x1 = x2 = x? A natural guess, namely that

sl(x1 + x2) ?=
sl(x1)

√
1− sl4(x2) + sl(x2)

√
1− sl4(x1)

1 + sl2(x1)sl2(x2)
, (1.4.5.1)

which is equivalent to the addition formula∫ w1

0

dt√
1− t4

+
∫ w2

0

dt√
1− t4

=
∫ w3

0

dt√
1− t4

(mod 2ΩZ + 2iΩZ)

with

w3 =
w1

√
1− w4

2 + w2

√
1− w4

1

1 + w2
1w

2
2

, (1.4.5.2)

turns out to be correct.

(1.4.6) Euler’s addition formula. In fact, Euler discovered and proved a common generalization of both
(1.4.5.2) and the addition formula for sin(s). Euler’s result is the following: if

f(t) = 1 +mt2 + nt4,

then ∫ u

0

dt√
f(t)

+
∫ v

0

dt√
f(t)

=
∫ w

0

dt√
f(t)

(1.4.6.1)

(modulo periods), where

w =
u
√
f(v) + v

√
f(u)

1− nu2v2
. (1.4.6.2)

For (m,n) = (−1, 0) (resp. = (0,−1)) this reduces to the addition formula for sin (resp. for sl).
Euler’s proof of (1.4.6.1-2) was based on a clever calculation, and therefore was not interesting at all (it

can be found, e.g., in [Mar]). What was missing was a general principle behind various addition formulas,
not a verification – however ingenious – of a particular formula. Such a principle was discovered by Abel;
his approach will be discussed in the next section (where we also deduce Euler’s formula from Abel’s general
results).

2. Abel’s Method

2.1 Addition formulas for cos, sin revisited

(2.1.1) We are going to analyze in great detail the geometric interpretation of the addition formulas for
cos, sin from 0.1.1-2:

18



L

_
L

_
P

_
P

P

P

C

1

1

2

2

if L,L are lines intersecting the circle C(R) in pairs of points

L ∩ C(R) = {P1, P2}, L ∩ C(R) = {P 1, P 2},

then (using the usual notation ω = dy/x = −dx/y, O = (1, 0))

L is parallel to L =⇒
∫ P1

O

ω +
∫ P2

O

ω =
∫ P 1

O

ω +
∫ P 2

O

ω (mod 2πZ). (2.1.1.1)

Assuming that neither L nor L is vertical, we can write their equations in the form

L : y = ax+ b, L : y = ax+ b; (2.1.1.2)

then

L is parallel to L ⇐⇒ a = a. (2.1.1.3)

(2.1.2) Exercise. Show that, conversely, (2.1.1.1) implies the addition formula (0.1.1.1). [Hint: Choose L
such that O ∈ L.]

(2.1.3) We shall try to prove (2.1.1.1) algebraically, by computing the partial derivatives of its left hand
side with respect to the parameters a, b. It will be natural to consider the parameters a, b as having complex
values.

Denoting the line L from (2.1.1.2) by La,b, the coordinates (x, y) of the points in the intersection
La,b(C) ∩ C(C) are the solutions of the equations

y = ax+ b, x2 + y2 = 1;

thus y is uniquely determined by x, which is in turn a root of the polynomial

F (x) = x2 + (ax+ b)2 − 1 = (a2 + 1)x2 + 2abx+ (b2 − 1) = 0.

This is a quadratic equation of discriminant

disc(F ) = 4(a2b2 − (b2 − 1)(a2 + 1)) = 4(a2 + 1− b2),

unless a = ±i. What makes these two values of a so special?
(2.1.4) About a = ±i. The answer is simple if we pass to homogeneous coordinates: by Bézout’s Theorem,
every projective line in P2(C) intersects the projectivization C̃(C) of the affine circle C(C) in two points (if
we count them with multiplicities). Recalling that C̃(C) has precisely two points at infinity P± = (1 : ±i : 0),
we see that the projectivization

L̃a,b : Y = aX + bZ
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of the affine line La,b contains P± if and only if a = ±i. This implies that

[C̃(C) ∩ L̃a,b(C) = C(C) ∩ La,b(C)] ⇐⇒ a 6= ±i.

Perhaps we could remedy the situation by working with C̃ and L̃a,b from the very beginning? Unfortunately,
the differential ω has a pole at each of the points P = P±, which means that the integral∫ P

O

ω

cannot be defined at them. As a result, we have to exclude the values a = ±i and work with a smaller
parameter space

B = {(a, b) | a, b ∈ C, a 6= ±i}.

Denote by

Σ = {(a, b) ∈ B | a2 + 1− b2 = 0}

the “discriminant curve” of the polynomial F .
(2.1.5) Intersecting C with La,b. If (a, b) ∈ B, then the discussion in 2.1.3 implies the following
description of C(C) ∩ La,b(C):

(2.1.5.1) If (a, b) 6∈ Σ, then the line La,b(C) intersects C(C) transversally at two points Pj = (xj , yj) (j = 1, 2),
where yj = axj + b,

F (x) = (a2 + 1)(x− x1)(x− x2), x1 + x2 = − 2ab
a2 + 1

, x1x2 =
b2 − 1
a2 + 1

.

(2.1.5.2) If (a, b) ∈ Σ, then the line La,b(C) is tangent to C(C) at a point P1 = (x1, y1) (and has no other
intersection with C(C)), where

F (x) = (a2 + 1)(x− x1)2, x1 = −a/b, y1 = ax1 + b = 1/b.

In order to emphasize the dependence of the points Pj on the parameters, we sometimes write Pj(a, b)
for Pj . In the case (2.1.5.2), we formally denote P2 = P1.

(2.1.6) The key calculation. For (a, b) ∈ B, put

I(a, b) =
∫ P1(a,b)

O

ω +
∫ P2(a,b)

O

ω (mod 2πZ) ∈ C/2πZ.

In 2.1.7 we prove the following simple formula for the infinitesimal variation of I(a, b), assuming that (a, b) 6∈
Σ:

dI(a, b) = I ′a da+ I ′b db = ω1 + ω2, ωj =

{
dyj/xj , if xj 6= 0

−dxj/yj , if yj 6= 0,
(2.1.6.1)

where I ′a = ∂I/∂a denotes the partial derivative with respect to a (and similarly for b).
Perhaps the best way to understand this formula is to compute its right hand side: by differentiating

the equations

x2 + y2 = 1, y = ax+ b

satisfied by the pairs (xj , yj) (j = 1, 2) with respect to all variables, we obtain

2x dx+ 2y dy = 0, dy = a dx+ x da+ db = −ay
x
dy + x da+ db,
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hence

(x+ ay)
dy

x
= x da+ db.

As

x+ ay = (a2 + 1)x+ ab,

we obtain

ωj =
dyj
xj

=
xj

(a2 + 1)xj + ab
da+

1
(a2 + 1)xj + ab

db. (2.1.6.2)

Combined with (2.1.6.1), this yields the following formulas for the partial derivatives of I on B − Σ:

I ′a =
x1

(a2 + 1)x1 + ab
+

x2

(a2 + 1)x2 + ab
=

2x1x2(a2 + 1) + ab(x1 + x2)
(a2 + 1)2x1x2 + (a2 + 1)ab(x1 + x2) + a2b2

=

=
2(b2 − 1)− 2a2b2/(a2 + 1)

(a2 + 1)(b2 − 1)− 2a2b2 + a2b2
=

2(b2 − a2 − 1)/(a2 + 1)
b2 − a2 − 1

=
2

a2 + 1
,

I ′b =
1

(a2 + 1)x1 + ab
+

1
(a2 + 1)x2 + ab

=
(a2 + 1)(x1 + x2) + 2ab

b2 − a2 − 1
= 0.

As observed in 2.1.1-2, the vanishing of I ′b = 0 implies the addition formula (0.1.1.1). Our calculation is a
priori valid for (a, b) ∈ B − Σ, and therefore establishes (0.1.1.1) only for (x1, y1) 6= (x2, y2). However, both
sides of ∫ x1,y1

O

ω +
∫ x2,y2

O

ω =
∫ x1x2−y1y2,x1y2+x2y1

O

ω (mod 2πZ)

are holomorphic functions of P1 = (x1, y1) and P2 = (x2, y2), hence the formula is still valid if we let P1 tend
to P2.
(2.1.7) In this section we give the promised proof of (2.1.6.1), which is just a variant of the fact that the
derivative of the integral of a fuction is the function itself. For fixed (a, b) ∈ B − Σ, let P1 = (x1, y1) 6=
P2 = (x2, y2) be the intersection points of La,b(C) with C(C). For all values of (a, b) in a sufficiently small
neighbourhood U of (a, b) in B − Σ, the intersection points P 1 = (x1, y1) 6= P 2 = (x2, y2) of La,b(C) with
C(C) are holomorphic functions of (a, b) (by Theorem on Implicit Functions; see 3.4.2 below) and each P j
lies in a contractible neighbourhood Uj of Pj . If xj 6= 0 (resp. yj 6= 0), we can also assume that xj 6= 0
(resp. yj 6= 0), by shrinking U if necessary. We wish to compute the partial derivatives of

I(a, b) =
∫ P 1

O

ω +
∫ P 2

O

ω

at (a, b). If xj 6= 0 (resp. yj 6= 0), then∫ P j

O

ω −
∫ Pj

O

ω =
∫ P j

Pj

ω =
∫ yj

yj

dy

x

(
resp. =

∫ xj

xj

−dx
y

)
.

This equality is to be understood as follows: we fix a path pj from O to Pj and a path qj from Pj to P j
contained in Uj . As Uj is contractible, ∫

pj?qj

ω −
∫
pj

ω =
∫
qj

ω ∈ C

does not depend on the choices of the paths.
Observing that
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∂

∂a

(∫ yj

yj

dy

x

)
(a, b) =

1
xj

(
∂yj
∂a

)
(a, b),

(and similarly for partial derivatives with respect to b), we obtain

d

(∫ yj

yj

dy

x

)
(a, b) =

1
xj

(
∂yj
∂a

(a, b) da+
∂yj

∂b
(a, b) db

)
=
(
dyj
xj

)
(a, b), (2.1.7.1)

at least in the case xj 6= 0; if xj = 0, then

d

(∫ yj

yj

dy

x

)
(a, b) =

(
−dxj
yj

)
(a, b). (2.1.7.2)

Taking the sum of (2.1.7.1) (resp. (2.1.7.2) if xj = 0) over j = 1, 2 yields the formula (2.1.6.1), save for the
notation: the variables from 2.1.6 did not have bars above them.

(2.1.8) What is a correct interpretation of the sum ω1 + ω2 in (2.1.6.1)? Put

S = {(x, y, a, b) | (a, b) ∈ B, x2 + y2 = 1, y = ax+ b};

then the projection

p : S −→ B, p(x, y, a, b) = (a, b)

is a covering of degree 2, unramified above B −Σ (and ramified above Σ). Viewing ω = dy/x = −dx/y as a
holomorphic differential on S, then

ω1 + ω2 = p∗ω

is the “trace” of ω with respect to the map p. The definition of p∗ above B−Σ is not difficult (see ?? below),
but its extension to the ramified region above Σ requires some work. In our calculation of dI(a, b) in 2.1.6,
the term b2 − a2 − 1 disappeared from the denominators; this indicates that p∗ω should indeed make sense
everywhere in B.

2.2 Example: Hyperelliptic integrals

Let us try to generalize the calculation from 2.1.6.

(2.2.1) The first thing that we need to understand is the vanishing of the sum

1
(a2 + 1)x1 + ab

+
1

(a2 + 1)x2 + ab
= 0 (2.2.1.1)

over the roots x1, x2 of the polynomial

F (x) = (a2 + 1)x2 + 2abx+ (b2 − 1).

Noting that

(a2 + 1)x+ ab =
1
2
F ′(x),

we see that (2.2.1.1) is a special case of the following
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(2.2.2) Exercise. Let F (x) ∈ C[x] be a polynomial of degree deg(F ) = n ≥ 2 with n distinct roots
x1, . . . , xn, and ϕ(x) ∈ C[x] a polynomial of degree deg(ϕ) ≤ n− 2. Then

n∑
j=1

ϕ(xj)
F ′(xj)

= 0.

(2.2.3) Exercise. According to the calculation in 2.1.6,

F ′(x1)F ′(x2) = 4((a2 + 1)x1 + ab)((a2 + 1)x2 + ab) = 4(b2 − a2 − 1) = disc(F ).

Does this identity generalize to polynomials of arbitrary degree?

(2.2.4) Hyperelliptic integrals. We are now ready to generalize the calculation from 2.1.6 (cf. [Web],
Sect. 13). Instead of the circle C we consider the curve

V : y2 = f(x),

where f(x) ∈ C[x] is a polynomial of even degree deg(f) = 2m ≥ 2 with 2m distinct roots. We shall be
interested in addition formulas for integrals of the form∫ P

O

xk dx√
f(x)

=
∫ P

O

xk dx

y

on V (C), where O ∈ V (C) is fixed (for k ≥ 0).
As y2 = f(x) on V , intersecting V with a general family of curves

R0(x, a) +R1(x, a)y + · · ·+Rm(x, a)ym = 0 (Rj ∈ C[x, a])

(where a = (a1, . . . , ar)) amounts to intersecting V with a simpler family

Da : P (x, a)−Q(x, a)y = 0,

where

P = R0 + fR2 + f2R4 + · · · , −Q = R1 + fR3 + f2R5 + · · ·

are polynomials P,Q ∈ C[x, a] = C[x, a1, . . . , ar]. The x-coordinates of the points in the intersection
V (C) ∩Da(C) are the roots of the polynomial

F (x, a) = P 2(x, a)− f(x)Q2(x, a),

which generalizes the polynomial F (x) from 2.1.6. We have

P (x, a) = p(a)xdP + · · · , Q(x, a) = q(a)xdQ + · · · , f(x) = r x2m + · · · ,

where
dP := degx(P ), dQ := degx(Q), p, q ∈ C[a]− {0}, r ∈ C∗.

We make the following assumptions:

(2.2.4.1) The degree of F in the variable x is equal to

degx(F ) = 2N := max(degx(P 2),degx(fQ2)) = 2 max(dP , dQ +m).

This is always true if dP 6= dQ + m; if dP = dQ + m, then this condition amounts to the requirement
that

p(a)2 − r q(a)2 ∈ C[a]− {0}.
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(2.2.4.2) The discriminant discx(F ) of F with respect to the variable x (a generalization of 4(b2 − a2 − 1) from
2.1) is not identically equal to zero as a polynomial in a.

(2.2.4.3) The resultant Resx(P,Q) of P and Q with respect to the variable x is not identically equal to zero as
a polynomial in a.

Put

H(a) = (p(a)2 − r q(a)2)discx(F )Resx(P,Q), B = {a ∈ Cr |H(a) 6= 0}.

The assumptions (2.2.4.1-3) imply that, for each a ∈ B, the polynomial F (x, a) has 2N distinct roots
x1, . . . , x2N depending on a (as holomorphic functions of a), none of which is a root of the polynomial
Q(x, a). This means that

(∀a ∈ B) V (C) ∩Da(C) = {P1, . . . , P2N}, Pj = Pj(a) = (xj , yj) = (xj , P (xj , a)/Q(xj , a)).

(2.2.5) For a ∈ B we can imitate the calculation from 2.1.6 to compute the infinitesimal variation

dI = I ′a da := I ′a1
da1 + · · ·+ I ′ar dar

of the sum

I(a) =
2N∑
j=1

∫ Pj(a)

O

xk dx

y
(k ≥ 0),

which should be understood as in 2.1.7: we consider only the values of I(a) for a ∈ B lying in a sufficiently
small neighbourhood of a, and we let the paths O − Pj(a) vary only in small neighbourhoods of the
endpoints. The differential dI is then well defined and independent of the choices of the paths. A global
definition of the integrals I(a) requires a non-trivial analysis of their periods; see ?? below.
We begin by differentiating the equations

y2 = f(x), yQ− P = 0,

obtaining

2y dy = f ′x dx, (yQ′x − P ′x) dx+Qdy + (yQ′a − P ′a) da = 0,

hence (
yQ′x − P ′x +

Qf ′x
2y

)
dx+ (yQ′a − P ′a) da = 0. (2.2.5.1)

Differentiating F = P 2 − fQ2 and using yQ = P , we see that

yQ′x − P ′x +
Qf ′x
2y

=
2fQQ′x − 2PP ′x +Q2f ′x

2yQ
= − F ′x

2yQ
.

Substituting to (2.2.5.1) we obtain

dx

y
=

2Q(yQ′a − P ′a)
F ′x

da =
2(PQ′a −QP ′a)

F ′x
da,

hence

2N∑
j=1

(
xk dx

y

)
(xj ,yj)

=
2N∑
j=1

2xk(PQ′a −QP ′a)
F ′x

∣∣∣∣
x=xj

da,

which implies (as in 2.1.7) that
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∂

∂al

 2N∑
j=1

∫ Pj(a)

O

xk dx

y

 =
2N∑
j=1

2xk(PQ′al −QP
′
al

)
F ′x

∣∣∣∣
x=xj

. (2.2.5.2)

Combining (2.2.5.2) with Exercise 2.2.2, we obtain the following addition theorem (a special case of Abel’s
Theorem).

(2.2.6) Proposition. If the assumptions (2.2.4.1-3) are satisfied, k ≥ 0 and

(∀l = 1, . . . , r) k + degx(PQ′al −QP
′
al

) ≤ 2N − 2, (2.2.6.1)

then the sum I(a), defined locally on B after appropriate choices of the paths, is locally constant.

(2.2.7) Let us analyze the condition (2.2.6.1) in more detail. Firstly,

PQ′al −QP
′
al

= Wl(a)xdP+dQ + · · · ,

where

Wl(a) = pq′al − qp
′
al

=

∣∣∣∣∣ p q

p′al q′al

∣∣∣∣∣
is the Wronskian of p, q ∈ C[a1, . . . , ar] with respect to the variable al. This implies that

(∀a ∈ B) degx(PQ′al −QP
′
al

) =

{
dP + dQ, if Wl(a) 6= 0

≤ dP + dQ − 1, if Wl(a) = 0.

Secondly,

2N − 2− (dP + dQ) = 2 max(dP , dQ +m)− (dP + dQ)− 2 =

{
m− 2, if dP = dQ +m

≥ m− 1, if dP 6= dQ +m.

It follows that (2.2.6.1) is satisfied in each of the following cases:

(2.2.7.1) dP 6= dQ +m, 0 ≤ k ≤ m− 1.
(2.2.7.2) dP = dQ +m, 0 ≤ k ≤ m− 2.
(2.2.7.3) dP = dQ +m, 0 ≤ k ≤ m− 1, (∀a ∈ B) (∀l = 1, . . . r) Wl(a) = 0.

The last condition is equivalent to

(∀a, b ∈ B) the vectors (p(a), q(a)), (p(b), q(b)) are linearly dependent

(which is a generalization of (2.1.1.3)).

In particular, if we fix the degrees dP , dQ ≥ 0 and consider the intersections of V with the universal family

Ca,b : (a0 + a1x+ · · ·+ adP x
dP ) = y (b0 + b1x+ · · ·+ bdQx

dQ) (2.2.7.4)

(where a0, . . . , bdQ are independent variables), we obtain common addition formulas for all integrals∫ P

O

xk dx

y
,

provided

0 ≤ k ≤ m− 1, dP 6= dQ +m

0 ≤ k ≤ m− 2, dP = dQ +m

k = m− 1, dP = dQ +m, bdQ = c adP (c ∈ C∗ constant).
(2.2.7.5)
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(2.2.8) Change of variables in hyperelliptic integrals. Suppose that f(x) ∈ C[x] is a polynomial of
degree n ≥ 1 with n distinct roots α1, . . . , αn. For every invertible complex matrix

g =

(
a b

c d

)
∈ GL2(C),

the change of variables

x = g(x) =
ax+ b

cx+ d

transforms f(x) into

f

(
ax+ b

cx+ d

)
= (cx+ d)−nf(x)

and dx into

d

(
ax+ b

cx+ d

)
=

(ad− bc) dx
(cx+ d)2

,

where f(x) ∈ C[x] is a polynomial of degree n (or n−1) with the set of roots {g−1(α1), . . . , g−1(αn)}−{∞}.
If n = 2m is even, it follows that the hyperelliptic integral∫

R(x,
√
f(x)) dx (R(x, y) ∈ C(x, y))

is transformed into ∫
R(x,

√
f(x)) dx (R(x, y) ∈ C(x, y)).

If m ≥ 2, then we can choose g such that g−1 maps three of the roots αj into 0,∞, 1, which yields f of the
form

f(x) = a x(x− 1)
2m−3∏
j=1

(x− βj).

In particular, for n = 4, we obtain the Legendre normalization:

f(x) = x(x− 1)(x− λ).

Other normalizations of elliptic integrals were considered by Jacobi:

f(x) = (1− x2)(1− k2x2)

(cf. 1.1) and Weierstrass:

f(x) = 4x3 − g2x− g3

(cf. 7.1.8 below).

2.3 Euler’s addition formula

(2.3.1) Let us prove Euler’s formula (1.4.6.1-2) by Abel’s method. The formula involves the differential
ω = dx/y on the Riemann surface V (C), where V is the curve

V : y2 = f(x) = 1 +mx2 + nx4
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(assuming that f has four distinct roots). We shall consider intersections of V with auxiliary curves

Da,b : y = 1 + ax+ bx2.

The intersection V (C) ∩ Da,b(C) consists of the point O = (0, 1) and three other points – possibly with
multiplicities – (xj , yj) (j = 1, 2, 3), where

yj = 1 + axj + bx2
j

and x1, x2, x3 are the roots of the polynomial

(1 + ax+ bx2)2 − (1 +mx2 + nx4)
x

= (b2 − n)x3 + 2abx2 + (a2 + 2b−m)x+ 2a =

= (b2 − n)(x− x1)(x− x2)(x− x3).

It follows that

x1 + x2 + x3 = − 2ab
b2 − n

= bx1x2x3,

hence

−x3 =
x1 + x2

1− bx1x2
.

Dividing the formulas

x1y2 − x2y1 = (x1 − x2) + b(x1x
2
2 − x2

1x2) = (x1 − x2)(1− bx1x2)

x2
1y

2
2 − x2

2y
2
1 = (x2

1 − x2
2)(1− nx2

1x
2
2)

by each other, we obtain

x1y2 + x2y1 =
(x1 + x2)(1− nx2

1x
2
2)

1− bx1x2
,

hence

−x3 =
x1y2 + x2y1

1− nx2
1x

2
2

. (2.3.1.1)

The special case of Abel’s Theorem proved in 2.2.7 (for m = 2, k = 0, dP = 4, dQ = 0) implies that the sum∫ (x1,y1)

O

ω +
∫ (x2,y2)

O

ω +
∫ (x3,y3)

O

ω (2.3.1.2)

(modulo periods) is equal to a constant independent of (a, b), at least if x1, x2, x3 are distinct. Taking a = 0,
we have (x1, y1) = O and (x2, y2) = (−x3, y3), which implies that the constant is equal to∫ x2

0

dx√
f(x)

+
∫ −x2

0

dx√
f(x)

= 0, (2.3.1.3)

as f(−x) = f(x). Combining (2.3.1.2-3), we obtain∫ (x1,y1)

O

ω +
∫ (x2,y2)

O

ω =
∫ (−x3,y3)

O

ω (2.3.1.4)

(modulo periods), with −x3 given by (2.3.1.1). This is precisely Euler’s formula, assuming that x1, x2, x3 are
distinct. However, the left hand side of (2.3.1.4) is a holomorphic function of P1 = (x1, y1), P2 = (x2, y2) ∈
V (C), and so is the right hand side, provided the denominator in (2.3.1.1) does not vanish. This implies
that (2.3.1.4) also holds in the case (x1, y1) = (x2, y2), provided nx4

1 6= 1.
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(2.3.2) Question. We have found 4 intersection points of V (C) and Da,b(C). According to Bézout’s
Theorem, the projective curves associated to V and Da,b should have 2 · 4 = 8 intersection points. Where
are the remaining 8− 4 = 4 points?

(2.3.3) Exercise. Let f(x) = x3 + Ax + B be a cubic polynomial with distinct roots. Show that Abel’s
method applies to the differential ω = dx/y on the curve V : y2 = f(x) and the family of lines La,b : y = ax+b.
Deduce an explicit addition formula for the integral∫ P

O

dx√
x3 +Ax+B

.

Are some choices of the base point O better than others?

(2.3.4) Exercise. Generalize the calculations from 2.2.5-7 to the case when deg(f) = 2m − 1 ≥ 3 is an
arbitrary odd integer.

2.4 General Remarks on Abel’s Theorem

(2.4.1) Abel was interested in addition formulas for general integrals of the form∫ P

O

ω,

where ω is an algebraic differential on the set of complex points V (C) of an algebraic curve V , O ∈ V (C) is
a fixed base point and P ∈ V (C) a variable point. His main insight was to consider sums∫ P1(λ)

O

ω + · · ·+
∫ Pd(λ)

O

ω,

where P1(λ), . . . , Pd(λ) are the intersection points of V with an auxiliary algebraic curve Cλ, depending on
a parameter λ = (λ1, . . . , λr) ∈ Cr. More precisely, the points in the intersection V (C) ∩ Cλ(C) naturally
appear with multiplicities reflecting the order of contact between the two curves:

P

P

2P

2

31

Formally, we consider V (C) ∩ Cλ(C) as a “divisor” on V (C), i.e. a formal linear combination

D(λ) =
∑
j

nj(λ)(Pj(λ)) (nj(λ) ∈ Z, Pj(λ) ∈ V (C))

(in our case all coefficients nj(λ) are positive) and put∫ D(λ)

O

ω =
∑
j

nj(λ)
∫ Pj(λ)

O

ω (2.4.1.1)

(which is well defined modulo the periods of ω).

28



(2.4.2) Abel’s Theorem states that, for suitable differentials ω and certain families of auxiliary curves Cλ,
the “Abel sum” (2.4.1.1) (modulo periods) does not depend on λ. This can be reformulated intrinsically as
follows: geometric properties of V and of the family Cλ define an equivalence relation

D(λ) ∼ D(λ′)

on the intersection divisors, and the value of ∫ D

O

ω

(modulo periods) depends only on the equivalence class of the divisor D. We have seen several examples of
this phenomenon:
(2.4.3) Circle. V = C : x2 + y2 = 1, ω = dy/x, Cλ = La,b : y = ax+ b, where a 6= ±i is fixed and λ = b is
variable.
(2.4.4) Hyperelliptic integrals. V : y2 = f(x), where f(x) is a polynomial of even degree 2m ≥ 4 with
distinct roots, ω = xk dx/y (0 ≤ k ≤ m− 2),

Cλ = Ca,b : (a0 + a1x+ · · ·+ adP x
dP ) = y (b0 + b1x+ · · ·+ bdQx

dQ).

This also works for k = m− 1, if we require in addition that bdQ = c adP (c ∈ C∗ constant) if dP = dQ +m.
(2.4.5) Elliptic integrals. V : y2 = f(x), where f(x) is a polynomial of degree 3 with distinct roots,
ω = dx/y, Cλ : y = ax+ b (λ = (a, b)).
(2.4.6) Questions: (i) In each of the above examples, what exactly is the equivalence relation on divisors
defined by the intersections with the family Cλ?
(ii) Does this equivalence relation admit an intrinsic description in terms of V alone?
(iii) For which differentials does Abel’s Theorem hold?
(iv) Conversely, if the integrals ∫ D

O

ω =
∫ D′

O

ω

are equal (modulo periods) for sufficietly many differentials ω, does it follow that D ∼ D′? Consider, for
example, the intersections of the circle C(C) with the family of conics

C ′µ : a1x
2 + a2xy + a3y

2 + a4x+ a5y + a6 = 0, µ = (a1, . . . , a6).

Denoting the intersection divisor C(C) ∩ C ′µ by D′(µ), under what conditions on µ1, µ2 does one have∫ D′(µ1)

O

ω ≡
∫ D′(µ2)

O

ω (mod 2πZ)?

See 3.8 below for the answer.

3. A Crash Course on Riemann Surfaces

This section contains a brief survey of basic facts on Riemann Surfaces. More details can be found in ([Fo],
Ch. 1, Sect. 1,2,9,10; [Fa-Kr 1], Ch. 1; [Ki], Ch. 5,6). For elementary properties of holomorphic functions in
one variable we refer to ([Ru 2], Ch. 10). Complex manifolds of higher dimension are discussed in [Gr-Ha]
and [Wei 1].

3.1 What is a Riemann surface?

(3.1.1) A Riemann surface is a geometric object X locally isomorphic to an open subset of C. These
local pieces are glued together so that one can work with holomorphic (resp. meromorphic) functions and
differentials globally on X. We have already encountered several examples of Riemann surfaces, such as
P1(C), C(C) (= the complex points of the circle), C/2πZ (= a cylinder), C/Z + Zi (= a torus). Here is
the standard (fairly impenetrable) definition.
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(3.1.2) Definition. A Riemann surfaceX is a connected Hausdorff topological space with countable basis
of open sets, equipped with a (holomorphic) atlas (more precisely, an equivalence class of atlases). An atlas
on X consists of a set of local charts (Uα, φα), where {Uα} is an open covering of X and φα : Uα

∼−→ φα(Uα)
is a homeomorphism between Uα and an open subset of C. The local charts are required to be compatible
in the following sense: for each pair (Uα, φα), (Uβ , φβ) of local charts, the transition function

φβ ◦ φ−1
α : φα(Uα ∩ Uβ) −→ φβ(Uα ∩ Uβ)

is holomorphic. Two atlases are equivalent if their union is also an atlas.

(3.1.3) Definition. Let X be a Riemann surface. A local coordinate at a point x ∈ X is a local chart
(Uα, zα) satisfying x ∈ Uα and zα(x) = 0.

(3.1.4) Remarks and examples. (1) One can replace C by Cn in 3.1.2; the geometric object X is then
called a complex manifold of dimension n.
(2) Morally, X is constructed by gluing the open sets φα(Uα) ⊂ C together along φα(Uα ∩ Uβ), using the
transition functions φβ ◦ φ−1

α .
(3) If zα is a local coordinate at x ∈ X, other local coordinates are given by power series

∑
n≥1 cnz

n
α with

non-zero radius of convergence and c1 6= 0.
(4) An open connected subset U ⊂ C is a Riemann surface, with one chart U ↪→ C given by the inclusion.
For each a ∈ U , zα(z) = z − a is a local coordinate at a.
(5) X = P1(C) is a (compact) Riemann surface, with two charts U1 = X − {∞}, U2 = X − {0}, and
φj : Uj

∼−→ C given by φ1(z) = z, φ2(z) = 1/z. The intersection U1 ∩ U2 = C∗, which means that X
is obtained from two copies of C glued along C∗ by the map z 7→ 1/z (this can be visualized using the
stereographic projection). For x = a ∈ C (resp. x = ∞), zα(z) = z − a (resp. zα(z) = 1/z) is a local
coordinate at x.

3.2 Holomorphic and meromorphic maps

(3.2.1) Holomorphic maps and functions

(3.2.1.1) Definition. A map f : X −→ Y between Riemann surfaces X,Y is holomorphic at a point
x ∈ X if there exist local charts (Uα, φα), x ∈ Uα on X and (Vβ , ψβ), f(x) ∈ Vβ on Y such that the function

ψβ ◦ f ◦ φ−1
α : φα(Uα) −→ ψβ(Vβ)

is holomorphic at φα(x). The map f is holomorphic if it is holomorphic at all points x ∈ X.

(3.2.1.2) In the above definition, one can replace “there exist local charts” by “for all local charts”.
(3.2.1.3) If f is holomorphic (at x), it is continuous (at x).

(3.2.1.4) Definition. A holomorphic function on a Riemann surface X is a holomorphic map f : X −→
C. Denote by O(X) the set of holomorphic functions on X (it is a commutative ring containing C).

(3.2.1.5) If Y is a Riemann surface, X a topological space and f : X −→ Y an unramified covering, then
there exists a unique structure of a Riemann surface on X for which f is a holomorphic map.
(3.2.1.6) If Y is a Riemann surface and G a group of holomorphic automorphisms of Y satisfying

(∀y ∈ Y ) (∃U 3 y open) (∀g ∈ G− {1}) g(U) ∩ U = ∅,

then the projection f : Y −→ G\Y = X is an unramified covering and there exists a unique structure of a
Riemann surface on X (equipped with the quotient topology) for which f is a holomorphic map.
(3.2.1.7) Example: 3.2.1.6 applies, in particular, to quotients f : C −→ C/L of C by discrete (additive)
subgroups, i.e. by L = Zu or L = Zu+ Zv, where u, v ∈ C are linearly independent over R.
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(3.2.2) Meromorphic functions

(3.2.2.1) Definition. A meromorphic function on a Riemann surface X is a holomorphic map f :
X −→ P1(C) such that f(X) 6= {∞}. Denote byM(X) the set of meromorphic functions on X (it is a field
containing C).

(3.2.2.2) If X ⊂ C is an open subset of C, then 3.2.2.1 is equivalent to the usual definition.
(3.2.2.3) If (Uα, zα) is a local coordinate at x ∈ X and f ∈M(X), then f ◦ z−1

α has a Laurent expansion

(f ◦ z−1
α )(z) =

∑
n≥n0

anz
n

converging in some punctured disc {z ∈ C | 0 < |z| < r}. One often writes “f =
∑
n anz

n
α” in Uα.

(3.2.2.4) Definition. The order of vanishing of a non-zero meromorphic function f ∈ M(X)− {0} at
x ∈ X is defined as

ordx(f) = min{n ∈ Z | an 6= 0} ∈ Z

(3.2.2.5) The integer ordx(f) does not depend on the choice of a local coordinate; f is holomorphic at x
⇐⇒ ordx(f) ≥ 0.
(3.2.2.6) Example: Let X = P1(C) and f(z) =

∏
j(z−aj)nj , where aj ∈ C are distinct and nj ∈ Z. The

description of local coordinates on X from 3.1.4(5), together with the identity

f(z) = (1/z)−
∑

nj
∏
j

(1− aj/z)nj

imply that

ordaj = nj , ord∞(f) = −
∑
j

nj .

(3.2.2.7) ordx is a discrete valuation: If f, g ∈M(X)− {0}, then

ordx(fg) = ordx(f) + ordx(g), ordx(f + g) ≥ min(ordx(f), ordx(g))

(with equality if ordx(f) 6= ordx(g)).
(3.2.2.8) If f ∈M(X)−{0}, then the set Z(f) = {x ∈ X | ordx(f) 6= 0} is a closed discrete (= the induced
topology on Z(f) is discrete) subset of X. In particular, if X is compact, then Z(f) is finite.
(3.2.2.9) If g, h ∈M(X) satisfy g(x) = h(x) for all x ∈ A, where A ⊂ X is a closed non-discrete subset of
X, then g = h (apply 3.2.2.8 to f = g − h).
(3.2.2.10) If f : X −→ Y is a non-constant holomorphic map and g : Y −→ P1(C) a meromorphic function
on Y , then f∗(g) = g ◦ f : X −→ P1(C) is a meromorphic function on X. The map f∗ :M(Y ) −→M(X)
is an embedding of fields (over C).
(3.2.3) Structure of non-constant holomorphic maps

(3.2.3.1) Proposition–Definition. Let f : X −→ Y be a non-constant holomorphic map between Rie-
mann surfaces and x ∈ X. Then there exist local coordinates zα (resp. zβ) at x (resp. f(x) ∈ Y ) such
that

(zβ ◦ f ◦ z−1
α )(z) = ze (“zβ = zeα”),

where e = ex ≥ 1 is an integer, called the ramification index of f at x (it does not depend on any choices).
The ramification points of f are the points x ∈ X with ex > 1; they form a discrete subset of X.

(3.2.3.2) Corollary. A non-constant holomorphic map between Riemann surfaces is open.

(3.2.3.3) Corollary of Corollary. If X is a compact Riemann surface, then O(C) = C.

Proof. If not, then there is a non-constant holomorphic map f : X −→ C; its image f(X) ⊂ C is both
compact and open, which is impossible.
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(3.2.3.4) Corollary. If f : X −→ Y (as in 3.2.3.1) is bijective, then ex = 1 for every x ∈ X and
f−1 : Y −→ X is holomorphic.

(3.2.3.5) Proposition. Let f : X −→ Y be as in 3.2.3.1. Assume, in addition, that f is proper, i.e.
f−1(K) ⊂ X is compact for every compact subset K ⊂ Y (this holds, for example, if both X and Y are
compact). Then there is an integer deg(f) ≥ 1 (“the degree of f”) such that

(∀y ∈ Y )
∑

x∈f−1(y)

ex = deg(f).

If ex = 1 for all x ∈ X, then f is an unramified covering.

(3.2.3.6) Example: If X = Y = C and f(z) = z2, then ex = 1 (resp. ex = 2) for x 6= 0 (resp. x = 0) and
deg(f) = 2.
(3.2.3.7) Example: If X is compact, f : X −→ Y = P1(C) is a non-constant meromorphic function and
y = 0 (resp. y =∞), then ex = ordx(f) (resp. ex = −ordx(f)) for each x ∈ f−1(y). In particular,

deg(f) =
∑

f(x)=0

ordx(f) = −
∑

f(x)=∞

ordx(f).

3.3 Holomorphic and meromorphic differentials

(3.3.1) Holomorphic functions revisited. Let X be a Riemann surface with an atlas {(Uα, φα)}. A
holomorphic function f : X −→ C defines, for each α, a holomorphic function fα = f ◦ φ−1

α ∈ O(φα(Uα)).
On φα(Uα ∩ Uβ) these functions satisfy the compatibility relation

fβ ◦ ψαβ = fα,

where ψαβ = φβ◦φ−1
α denotes the transition function. Writing zα for the standard coordinate on C ⊃ φα(Uα),

we can reformulate the compatibility relation as follows:

fα(zα) = fβ(zβ) = fβ(ψαβ(zα)).

Meromorphic functions on X admit an analogous description, with fα ∈M(φα(Uα)).

(3.3.2) Definition. A holomorphic differential ω onX is defined by a collection of holomorphic functions
gα ∈ O(φα(Uα)) such that the formal expressions ωα = gα(zα) dzα are compatible on φα(Uα∩Uβ) as follows:

gα(zα) dzα = gβ(ψαβ(zα)) dzβ = gβ(ψαβ(zα))ψ′αβ(zα) dzα,

i.e. gα = (gβ ◦ ψαβ)ψ′αβ . The set of holomorphic differentials on X will be denoted by Ω1(X) (it is an
O(X)-module).

(3.3.3) Definition. A meromorphic differential on X is defined by a collection of meromorphic functions
gα ∈ M(φα(Uα)) satisfying the same compatibility relations as in 3.3.2. Meromorphic differentials form a
vector space over M(X), which will be denoted by Ω1

mer(X).

(3.3.4) Examples: (i) If f ∈ O(X) (resp. ∈ M(X)) is given by a collection fα(zα) as in 3.3.1, then
the collection of functions gα = f ′α(zα) defines a differential df ∈ Ω1(X) (resp. ∈ Ω1

mer(X)), for which
(df)α = f ′α(zα) dzα = dfα.
(ii) If f : Y −→ X is a holomorphic map and ω ∈ Ω1(X), one can define the pull-back f∗(ω) ∈ Ω1(Y ) as
follows: let (Uα, φα) be an atlas of X and assume that ω is given is given by a collection gα ∈ O(φα(Uα))
as in 3.3.2. Choose an atlas (Vβ , ψβ) of Y such that, for each β, f(Vβ) ⊂ Uα for some α = j(β). In terms
of the standard coordinates zβ on Vβ (resp. zα = zj(β) on Uα = Uj(β), the map f is defined by the formula
zα = fβ(zβ), where fβ = φα ◦ f ◦ ψ−1

β . The differential f∗(ω) is then given by the collection of functions
(gj(β) ◦ fβ)f ′β ∈ O(ψβ(Vβ)). The same construction works for meromorphic differentials. In particular,
f∗(dh) = d(h ◦ f) for any h ∈M(X).
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(3.3.5) Definition. Let ω ∈ Ω1
mer(X)− {0} and x ∈ X. Choose a local coordinate (Uα, zα) at x and write

ωα = fα(zα) dzα,

fα(zα) =
∞∑

n≥n0

anz
n
α.

The order of zero of ω and its residue at x are defined as

ordx(ω) = ordx(fα), resx(ω) = a−1.

(3.3.6) Exercise. Show that both ordx(ω) and resx(ω) are independent on the choice of a local coordinate.

(3.3.7) Example: For X = P1(C) and ω = dz (where z is the standard coordinate on C = X − {∞}),
ω = d(z − a) for every a ∈ C, hence orda(dz) = 0. Taking u = 1/z as a local coordinate at ∞ ∈ X, the
identity dz = −u−2 du shows that ord∞(dz) = −2.

(3.3.8) Lemma. If f ∈M(X)− {0} and ordx(f) 6= 0, then ordx(df) = ordx(f)− 1.

Proof. In a local coordinate zα at x, we have fα(zα) =
∑
n≥m anz

n
α, where m = ordx(f) 6= 0 and am 6= 0.

Then (df)α =
∑
n≥m nanz

n−1
α dzα, hence ordx(df) = m− 1.

(3.3.9) The statements in 3.2.2.8-9 hold for meromorphic differentials.

(3.3.10) The Residue Theorem. If X is a compact Riemann surface and ω ∈ Ω1
mer(X)− {0}, then

∑
x∈X

resx(ω) = 0.

(3.3.11) Corollary. If X is a compact Riemann surface and f ∈M(X)− {0}, then

∑
x∈X

ordx(f) = 0.

Proof. The meromorphic differential ω = df/f satisfies resx(ω) = ordx(f) for each x ∈ X. (Alternatively,
one can apply 3.2.3.5 to f : X −→ P1(C), using 3.2.3.7.)

(3.3.12) Exercise. Deduce 2.2.2 from 3.3.10.

(3.3.13) Lemma. If f : X −→ Y is a non-constant holomorphic map between Riemann surfaces, x ∈ X
and zβ a local coordinate at f(x) ∈ Y , then

ordx(f∗(dzβ)) = ex − 1.

Proof. Using 3.2.3.1, we can assume that f is given by zβ = zexα , where zα is a local coordinate at x, hence

ordx(f∗(dzβ)) = ordx(d(zexα )) = ordx(exzex−1
α dzα) = ex − 1.

(3.3.14) Lemma. Let X be a Riemann surface. If ω1, ω2 ∈ Ω1
mer(X)−{0}, then there exists a meromorphic

function f ∈M(X)− {0} such that ω1 = fω2.

Proof. If ω1, ω2 are given locally by (non-zero) meromorphic functions g1,α, g2,α satisfying the compatibility
relations from 3.3.2, then the quotients (g1,α/g2,α) define a (non-zero) meromorphic function f , as in 3.3.1.
Thus ω1 = fω2.
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(3.3.15) Theorem [Fa-Kr 1, Ch. 2]. Let X be a Riemann surface. ThenM(X) 6= C and Ω1
mer(X) 6= {0}.

(3.3.16) Corollary. For every Riemann surface X, the vector space Ω1
mer(X) has dimension 1 overM(X).

(3.3.17) We refer to ([Fo], Ch. 1, Sect. 9, 10; [Fa-Kr 1], 1.3, 1.4 and [Ki], Sect. 6.1) for the calculus of
differential forms and their integration on Riemann surfaces.

3.4 Theorem on implicit functions

(3.4.1) Example: Consider the circle C : f(x, y) = x2 + y2 − 1 = 0.

C

(0,1)

As ∂f/∂x(0, 1) = 0, the tangent to C at the point (0, 1) is horizontal. Moreover, for every open set U 3 (0, 1)
(either in R2 or in C2), the intersection of U with C (i.e. with either C(R) or C(C)) is not a graph of any
function y 7→ (x(y)), because there are two possible values of x for y arbitrarily close to 1. On the other
hand, it is given by a graph of a function x 7→ y(x)) (for sufficiently small U). This is a special case of the
following result.

(3.4.2) Theorem on Implicit Functions (holomorphic version). Let U ⊂ C2 be an open set, f ∈
O(U) a holomorphic function of (x, y) ∈ U and Z = {(x, y) ∈ U | f(x, y) = 0} its set of zeros. Assume that
P = (xP , yP ) ∈ Z is a point satisfying ∂f/∂x(P ) 6= 0 (i.e. “the tangent to Z at P is not horizontal”). Then
there exists an open set V ⊂ U , V 3 P , such that ∂f/∂x(Q) 6= 0 for all Q ∈ Z ∩V , the horizontal projection

p2 : Z ∩ V −→ p2(Z ∩ V ) 3 yP , p2(x, y) = y

is a homeomorphism and its inverse is given by y 7→ (x(y), y), where x(y) is a holomorphic function on the
open set p2(Z ∩ V ) 3 yP .

(3.4.3) Exercise. Generalize 3.4.2 to a system of holomorphic equations

f1(z1, . . . , zn) = · · · = fm(z1, . . . , zn) = 0 (m < n).

3.5 Orientation of Riemann surfaces

(3.5.1) Orientation of real vector spaces. Let V be a (non-zero) real vector space of finite dimension
n. The set B(V ) of (ordered) bases of V is a principal homogeneous space under GL(V ) (i.e. for each pair
of bases u, v there exists a unique element g ∈ GL(V ) satisfying g(u) = v). This defines a natural topology
on the set B(V ) (exercise: how?). By definition, two bases u, v define the same orientation of V iff they lie
in the same connected component of B(V ), i.e. iff v = g(u) with g ∈ GL(V )◦ contained in the connected
component of the identity of GL(V ), i.e. iff det(g) > 0.

Equivalently, fix a volume element ω on V (i.e. a non-zero element of the highest exterior power of the
dual space V ∗). Then the bases u, v define the same orientation of V iff ω(u1, . . . , un) and ω(v1, . . . , vn) have
the same sign.
(3.5.2) Orientation of C. The standard orientation of C (considered as a real vector space) is given
by the ordered basis 1, i. Let x, y be the real and imaginary part, respectively, of the canonical complex
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coordinate z = x + iy on C. Then the standard volume element ω = x ∧ y satisfies ω(1, i) > 0. In spite of
appearances, this “standard” orientation of C is not canonical: it depends on the choice of i. Some algebraic
geometers therefore keep track of i (more precisely, of 2πi) in all the formulas.

(3.5.3) Orientation of a Riemann surface. The construction from 3.5.2 can be used to define an
orientation of any Riemann surface X. If {(Uα, φα)} is an atlas of X, one can use the local charts to
transport the standard orientation of C to X, at least infinitesimally (i.e. to the tangent spaces of X). We
must check that these orientations agree on the intersections Uα∩Uβ . Let us decompose the local coordinates
zα, zβ (at the same point x ∈ X) into their real and imaginary components zα = xα + iyα, zβ = xβ + iyβ .
For small ε > 0, the vectors ε, iε based at 0 = zα(x) are mapped by the transition function ψαβ = zβ ◦ z−1

α

to

ε 7→ ∂xβ
∂xα

+ i
∂yβ
∂xα

+O(ε2)

iε 7→ ∂xβ
∂yα

+ i
∂yβ
∂yα

+O(ε2).

This implies that the infinitesimal change of orientations is given by the sign of the determinant of the
(non-singular) Jacobian matrix

M =

( ∂xβ
∂xα

∂yβ
∂xα

∂xβ
∂yα

∂yβ
∂yα

)
.

Hovever, the Cauchy-Riemann equations tell us that the matrix M is of the form

M =

(
A −B

B A

)
,

where A,B are real valued functions; thus det(M) = A2 + B2 > 0, which proves the compatibility of the
two orientations.

(3.5.4) Explicitly, if (Uα, zα) is a local coordinate on X, V ⊂ Uα an open subset and f : V −→ R≥0 a
non-negative (differentiable) function for which f−1(0) ⊂ V is a discrete set, then

i

2

∫
V

f dzα ∧ dzα > 0,

as

i

2
d(x+ iy) ∧ d(x− iy) = dx ∧ dy.

In particular, if ω ∈ Ω1(V )− {0}, then

i

2

∫
V

ω ∧ ω =
i

2

∫
V

|fα(zα)|2 dzα ∧ dzα > 0 (3.5.4.1)

(writing ωα = fα(zα) dzα).

3.6 Genus and the Riemann-Hurwitz formula

(3.6.1) The genus. Let X be a compact Riemann surface. By 3.5.3, X is orientable, hence homeomorphic
to a sphere with g handles. The integer g = g(X) ≥ 0 is called the (topological) genus of X.

(3.6.2) The Euler (– Poincaré) formula. For every triangulation of X, denote by si the number of
simplices of dimension i = 0, 1, 2 in the triangulation. Then

s0 − s1 + s2 = 2− 2g(X).
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(3.6.3) The Riemann-Hurwitz formula. Let f : X −→ Y be a non-constant holomorphic map between
compact Riemann surfaces. Then

2g(X)− 2 = (2g(Y )− 2) deg(f) +
∑
x∈X

(ex − 1).

(3.6.4) Exercise. Prove 3.6.3 by considering suitably compatible triangulations of X and Y .

(3.6.5) Example: If X is a compact Riemann surface and f : X −→ P1(C) is a holomorphic map of
degree deg(f) = 2, then

2g(X)− 2 = −4 + |S|, S = {x ∈ X | ex = 2} = {x ∈ X | ex 6= 1};

thus there are |S| = 2n (n ≥ 1) ramification points of f and g(X) = n− 1.

3.7 Smooth complex plane curves are Riemann surfaces

(3.7.1) Smooth affine plane curves

(3.7.1.1) An affine plane curve over a field K is a polynomial equation

V : f(x, y) = 0,

where f(x, y) ∈ K[x, y] is a polynomial with coefficients in K. Note that, with this definition, the curves
“y = 0” and “y2 = 0” are not the same objects.

(3.7.1.2) Definition. Let L ⊃ K be a field and P = (xP , yP ) ∈ V (L) a point on V with coordinates in L.
We say that P is a smooth point of V if(

∂f

∂x
(P ),

∂f

∂y
(P )
)
6= (0, 0).

(3.7.1.3) Examples: (i) Each point of V1 : y = 0 is smooth.
(ii) No point of V2 : y2 = 0 is smooth.
(iii) The point (0, 0) is not smooth on either of the curves

V3 : y2 − x3 = 0, V4 : y2 − x2(x+ 1).

All other points on V3, V4 are smooth.

(3.7.1.4) Exercise. Smoothness of P on V is invariant under every affine change of coordinates

x = ax′ + by′ + c, Y = dx′ + ey′ + f, ae− bd 6= 0.

(3.7.1.5) Definition. We say that V is a smooth affine plane curve over K if every point P ∈ V (K)
is smooth on V (where K is an algebraic closure of K).

(3.7.1.6) Exercise. If V is smooth, then

(∀ field L ⊃ K) (∀Q ∈ V (L)) Q is smooth on V.

[Hint: Use the Nullstellensatz.]

(3.7.2) Proposition. If K ⊂ C is a subfield of C and V is a smooth affine plane curve over K, then:
(i) The set of complex points V (C) of V has only finitely many connected components.
(ii) Each connected component X of V (C) has a natural structure of a Riemann surface (in which the
functions x, y are holomorphic on X).
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(iii) If V : f(x, y) = 0 is geometrically irreducible (i.e. if the polynomial f is irreducible in K[x, y] ⇐⇒ f
is irreducible in C[x, y]), then V (C) is connected.

Proof. We can assume that K = C. (i) Exercise. (ii) Put

Xx = {P = (xP , yP ) ∈ X | ∂f/∂x(P ) 6= 0}, Xy = {P = (xP , yP ) ∈ X | ∂f/∂y(P ) 6= 0}.

By 3.7.1.6, X = Xx ∪ Xy. If P ∈ Xx (resp. P ∈ Xy), then 3.4.2 (Theorem on Implicit Functions) tells
us that there exists an open neighbourhood UP,x (resp. UP,y) of P contained in Xx (resp. in Xy) such
that the function y − yP (resp. x − xP ) defines a homeomorphism between UP,x (resp. UP,y) and an
open neighbourhood WP of 0 ∈ C, and that X ∩ UP,x = {(fP (z), z + yP ) | z ∈ WP } (resp. X ∩ UP,y =
{(z + xP , fP (z) | z ∈WP }), where fP (z) is a holomorphic function in WP .

We want to show that the collection {(UP,x, y − yP ) |P ∈ Xx} ∪ {(UP,y, x − xP ) |P ∈ Xy} defines an
atlas on X.

If P,Q ∈ Xx, then the local coordinates y − yP and y − yQ are compatible on UP,x ∩UQ,x, as y − yQ =
y − yP + (yP − yQ) is a holomorphic function in y − yP (and similarly for the local coordinates x− xP and
x− xQ for P,Q ∈ Xy).

If P ∈ Xx, Q ∈ Xy and U = UP,x ∩ UQ,y 6= ∅, then U ⊂ Xx ∩ Xy and for R ∈ U , x(R) − xQ is a
holomorphic function of y(R)− yP (and vice versa), again by 3.4.2.
(iii) After a linear change of coordinates we can assume that

f(x, y) = yn + a1(x)yn−1 + · · ·+ an(x) (aj(x) ∈ C[x], n ≥ 1)

(by an elementary case of the Noether normalization Lemma). As f is ireducible in C[x, y] = C[x][y], it is
irreducible in C(x)[y], hence the discriminant of f with respect to the y-variable discy(f) ∈ C[x] is non-zero.
It follows that

S = {x ∈ C |discy(f)(x) = 0}

is a finite subset of C. The projection p : V (C) −→ C (p(x, y) = x) on the first coordinate axis has the
following properties:

(a) (∀x ∈ C) #p−1(x) ≤ n.
(b) (∀x ∈ C− S) #p−1(x) = n.
(c) (∀(x, y) ∈ p−1(C− S)) ∂f/∂y(x, y) 6= 0.

The Theorem on Implicit Functions implies that the restriction of p to Y = p−1(C−S) = V (C)−p−1(S)
is an unramified covering. As Y is dense in V (C), it is sufficient to prove that Y is connected.

Elementary properties of unramified coverings imply that, for each connected component Yj of Y , the
restriction of p to pj : Yj −→ C−S is also an unramified covering. In particular, Y = Y1∪· · ·YN is a disjoint
union of N ≤ n connected components, thanks to (a). Applying the Theorem on Implicit Functions again,
we see that, locally on C− S, the projection pj admits sections given by the formulas

x 7→ (x, si(x)), (1 ≤ i ≤ rj),

where each si is holomorphic. The coefficients of the polynomial

fj =
rj∏
i=1

(y − si(x)) ∈ O(C− S)[y]

are holomorphic functions defined globally on C− S, which yields a factorization

f = f1 · · · fN ∈ C[x, y].

The same argument as in the proof of the Gauss Lemma (“the contents of a product of polynomials is equal
to the product of the contents of the factors”) shows that each factor fj is contained in C[x, y]. Irreducibility
of f then implies that N = 1 as claimed.
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See also ([Ki], 7.22) or ([Fo], 8.9) for variants of this proof.
(3.7.3) Example: For the circle V = C : x2 + y2 − 1 = 0 and P = (xP , yP ) ∈ C(C), y − yP is a local
coordinate at all P 6= (0,±1) and x− xP is a local coordinate at all P 6= (±1, 0).
(3.7.4) Smooth projective plane curves

(3.7.4.1) A projective plane curve over a field K is a polynomial equation

Ṽ : F (X,Y, Z) = 0,

where F (X,Y, Z) ∈ K[X,Y, Z] is a homogeneous polynomial of degree d ≥ 1 with coefficients in K.

(3.7.4.2) Let P = (XP : YP : ZP ) ∈ Ṽ (L) be a point on Ṽ with homogeneous coordinates in a field L ⊃ K.
The point P is contained in one of the standard affine planes {X 6= 0}, {Y 6= 0}, {Z 6= 0} covering P 2. If,
for example, YP 6= 0, then P ∈ V (L), where

V : f(u, v) = F (u, 1, v) = 0

is the equation of the affine plane curve

Ṽ ∩ {Y 6= 0} ⊂ {Y 6= 0} = A2

written in the affine coordinates u = X/Y, v = Z/Y on {Y 6= 0} = A2. We say that P is a smooth point
of Ṽ if it is a smooth point of V .

(3.7.4.3) Exercise. Show that P is a smooth point of Ṽ if and only if(
∂F

∂X
(P ),

∂F

∂Y
(P ),

∂F

∂Z
(P )
)
6= (0, 0, 0).

Deduce that the definition of smoothness in 3.7.4.2 does not depend on any choices and is invariant under a
projective change of coordinates (by an element of PGL3). [Hint: Use the fact that XDX + Y DY + ZDZ

(where DT = ∂/∂T ) acts on F by multiplication by deg(F ).]

(3.7.5) Proposition. If K ⊂ C is a subfield of C and Ṽ is a smooth projective plane curve over K, then:
(i) The polynomial F (X,Y, Z) is irreducible in C[X,Y, Z].
(ii) The set of complex points Ṽ (C) of Ṽ is connected.

(iii) Ṽ (C) has a natural structure of a compact Riemann surface.

Proof. (i) Exercise (use Bézout’s Theorem). (ii) See 3.7.2(iii). (iii) Exercise (use 3.7.2 and the compactness
of P 2(C)).

(3.7.6) Example: For the projective circle Ṽ = C̃ : X2 + Y 2 − Z2 = 0, C̃(C) ∼−→ P1(C) (cf. 0.3.1.0 and
3.8.4 below).
(3.7.7) A hyperelliptic example: Let K be a field of characteristic char(K) 6= 2 and

f(x) = a0(x− α1) · · · (x− αn) = a0x
n + a1x

n−1 + · · ·+ an ∈ K[x]

a polynomial with coefficients in K of degree n ≥ 3 with distinct roots α1, . . . , αn ∈ K. Consider the affine
plane curve

V : y2 − f(x) = 0

and the corresponding projective plane curve

Ṽ : Y 2Zn−2 − a0(X − α1Z) · · · (X − αnZ) = Y 2Zn−2 − (a0X
n + a1X

n−1Z + · · ·+ anZ
n) = 0

(where x = X/Z, y = Y/Z).
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We are looking for non-smooth points on Ṽ . If P = (x, y) ∈ V (K) is a non-smooth point on V , then

y2 − f(x) = 0, 2y = 0, −f ′(x) = 0.

As 2 is invertible in K, it follows that y = 0, hence f(x) = f ′(x) = 0. This contradicts our assumption that
f has only simple roots, hence the affine curve V is smooth.

What about the points at infinity? There is only one such point O, as

Ṽ (K)− V (K) = Ṽ (K) ∩ {Z = 0} = {O = (0 : 1 : 0)},

contained in the standard affine piece {Y 6= 0}. Passing to the affine coordinates u = X/Y = x/y, v =
Z/Y = 1/y, the point O corresponds to (u, v) = (0, 0), and the affine curve Ṽ ∩ {Y 6= 0} is given by the
equation (

Z

Y

)n−2

− a0

(
X

Y
− α1

Z

Y

)
· · ·
(
X

Y
− αn

Z

Y

)
= 0,

i.e.

g(u, v) = vn−2 − (a0u
n + a1u

n−1v + · · ·+ anv
n) = 0.

As

∂g

∂u
(0, 0) = 0,

∂g

∂v
(0, 0) =

{
1, if n = 3

0, if n > 3,

it follows that O = (0 : 1 : 0) is a smooth point of Ṽ if and only if n = 3.
(3.7.8) The hyperelliptic example continued: If n = 2m ≥ 4 is even, then there is a simple way to
resolve the singularity of the curve Ṽ at O: the polynomial

g(u) = u2mf(1/u) = a2mu
2m + · · ·+ a1u+ a0

has distinct roots and satisfies g(0) = a0 6= 0. Consider the affine plane curves

V : y2 − f(x) = 0, W : v2 − g(u) = 0;

they are both smooth. The formulas

u = 1/x, v = y/xm, x = 1/u, y = v/um. (3.7.8.1)

define an isomorphism

V ∩ {x 6= 0} ∼−→W ∩ {u 6= 0}

Imitating the construction of P 1(C) by gluing together two copies of C along C∗ via the map 1/z (cf.
3.1.4(5)), we can glue together V and W along their open subsets V ∩{x 6= 0} (resp. W ∩{u 6= 0}) according
to the formulas (3.7.8.1). The resulting object will be a projective curve U (exercise!) which is smooth
(although we have not yet defined smoothness for non-plane curves). There are exactly two points O± in

U(K)− V (K) = {O± = (u, v) = (0,±
√
a0)};

they correspond to the two branches of Ṽ meeting at O, i.e. to the two choices of a sign in the asymptotic
behaviour

(x, y) −→ O± ⇐⇒ x −→∞, y/xm −→ ±
√
a0.

(3.7.9) Exercise. Resolve the singularity of V at O if n = 2m− 1 ≥ 5 is odd.
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3.8 Geometry of the circle revisited

We are now ready to answer Question 2.4.6(iv) about the values of integrals of ω = dy/x on (the complex
points of) the circle C : x2 + y2 = 1.
(3.8.1) Let us return to the situation considered in 2.1 (in the light of the discussion in 2.4): intersecting
the affine circle C(C) with two lines

La,b : y − ax− b = 0, La′,b′ : y − a′x− b′ = 0

(where a, a′ ∈ C− {±i}) we obtain intersection divisors

D = (P1) + (P2), D′ = (P ′1) + (P ′2)

on C(C). We know that (using the notation from (2.4.1.1))

a = a′ =⇒
∫ D

O

ω ≡
∫ D′

O

ω (mod 2πZ)

(in fact, it is easy to see that the converse implication also holds). Our goal is to find an abstract reformulation
of the condition “a = a′”. To this end, consider the function

f = c · y − ax− b
y − a′x− b′

= c · Y − aX − bZ
Y − a′X − b′Z

,

where c ∈ C∗ is a constant, to be specified later. What can we say about f? It is a meromorphic function
on the projective circle C̃(C), with zeros at P1, P2 and poles at P ′1, P ′2. More precisely, the divisor of f ,
defined as

div(f) =
∑
P

ordP (f)(P ),

is equal to

div(f) = (P1) + (P2)− (P ′1)− (P ′2) = D −D′.

We can also look at the behaviour of f at the two points at infinity P± = (1 : ±i : 0) ∈ C̃(C)− C(C):

f(P+) = c
i− a
i− a′

, f(P−) = c
−i− a
−i− a′

.

Choosing c so that f(P+) = 1, we have

f(P−) =
(i− a′)(−i− a)
(i− a)(−i− a′)

=
1 + aa′ + i(a′ − a)
1 + aa′ − i(a′ − a)

,

hence

a = a′ ⇐⇒ f(P+) = f(P−) = 1.

This suggests the following tentative answer to Question 2.4.6(iv).

(3.8.2) Conjecture. Let D1 =
∑
jmj(Pj), D2 =

∑
k nk(Qk) be two divisors on C̃(C) of the same degree∑

jmj =
∑
k nk and such that Pj 6= P± 6= Qk for all j, k. Then

∫ D1

O

ω ≡
∫ D2

O

ω (mod 2πZ) ⇐⇒ (∃g ∈M(C̃(C))∗) g(P+) = g(P−) = 1, D1 −D2 = div(g)
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(the implication “⇐=” being a special case of Abel’s Theorem).

(3.8.3) Exercise. Generalize the calculation from 3.8.1 to the case when La,b is replaced by the curve
(2.2.7.4). What is the relation to the conditions (2.2.7.5) and to 3.8.2?

(3.8.4) Exercise. The map
C(C) −→ C∗, (x, y) 7→ z = x+ iy

extends to a holomorphic isomorphism of Riemann surfaces λ : C̃(C) ∼−→ P 1(C), under which P+ (resp.
P−) is mapped to 0 (resp. ∞) and λ∗(dz/z) = i dy/x = iω.

(3.8.5) Proof of Conjecture 3.8.2. Applying λ, we are reduced to prove the following statement about
the multiplicative group C∗:
Let D1 =

∑
jmj(Pj), D2 =

∑
k nk(Qk) be two divisors on P1(C) of the same degree

∑
jmj =

∑
k nk and

such that Pj 6= 0,∞ 6= Qk for all j, k. Writing D = D1 −D2 =
∑
j(bj)−

∑
j(aj), then

∫
D

dz

z
:=
∑
j

∫ bj

aj

dz

z
= 0 ∈ C/2πiZ ⇐⇒ (∃g ∈M(P1(C))∗) g(0) = g(∞) = 1, div(g) = D.

Noting that (cf. 3.9.7 below)

f(z) =
∏
j

z − bj
z − aj

(3.8.5.1)

is the unique function f ∈M(P1(C))∗ satisfying div(f) = D and f(∞) = 1, the statement follows from the
fact that

exp
(∫

D

dz

z

)
=
∏
j

bj
aj

= f(0),

as ∫
D

dz

z
= 0 ∈ C/2πiZ ⇐⇒ exp

(∫
D

dz

z

)
= 1 ∈ C∗.

(3.8.6) The additive group (C,+). Let us try to apply the same argument to the differential ω = dz ∈
Ω1(C). If D =

∑
j(bj) −

∑
j(aj) (aj , bj ∈ C) is a divisor of degree zero, then the function f(z) defined by

(3.8.5.1) is, as in 3.8.5, the unique function f ∈ M(P1(C))∗ satisfying div(f) = D and f(∞) = 1. The
integral ∫

D

dz :=
∑
j

∫ bj

aj

dz =
∑
j

bj −
∑
j

aj ∈ C

has a well-defined value in C (there are no periods, as C is simply connected). Writing the power series
expansion of f at the point ∞ in terms of the local coordinate w = 1/z, we see that

f =
∏
j

1− bjw
1− ajw

= 1 +

∑
j

aj −
∑
j

bj

w +O(w2),

hence ∫
D

dz = 0 ⇐⇒
∑
j

aj −
∑
j

bj = 0 ⇐⇒ ord∞(f − 1) ≥ 2.

3.9 Divisors on Riemann surfaces

Throughout 3.9, X is a Riemann surface. The results from 3.8 suggest that the following objects could be
of interest.
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(3.9.1) Definition. A divisor on X is a locally finite formal sum

D =
∑
P∈X

nP (P ) (nP ∈ Z),

where “locally finite” means the following: denoting by supp(D) := {P ∈ X |nP 6= 0} the support of D,
we require that, for each compact subset K ⊂ X, the intersection K ∩ supp(D) be finite (in particular, if
X itself is compact, then “locally finite” = “finite”). The set Div(X) of all divisors on X is an abelian
group with respect to addition. The divisor D is effective (notation: D ≥ 0) if all coefficients nP ≥ 0 are
non-negative.

(3.9.2) Definition. The divisor of a meromorphic function f ∈ M(X)∗ (resp. the divisor of a
meromorphic differential ω ∈ Ω1

mer(X)− {0}) is

div(f) =
∑
P∈X

ordP (f)(P ), div(ω) =
∑
P∈X

ordP (ω)(P )

(the sums are locally finite, as observed in 3.2.2.8 and 3.3.9, respectively). The divisors of the form div(f)
(f ∈M(X)∗) are called principal divisors; they form a subgroup P (X) ⊂ Div(X).

(3.9.3) Definition. If X is compact, then the degree of a divisor D =
∑
P nP (P ) ∈ Div(X) is deg(D) =∑

P nP ∈ Z (a finite sum!). Denote by Div0(X) = Ker(deg : Div(X) −→ Z) the subgroup of divisors of
degree zero. By 3.3.11, P (X) is in fact contained in Div0(X).

(3.9.4) The map div :M(X)∗ −→ Div(X) is a homomorphism of groups (because of the first statement in
3.2.2.7) with image P (X). If X is compact, then the kernel of div is equal to C∗, by 3.2.3.3.

(3.9.5) Definition. The divisor class group of X is the quotient abelian group Cl(X) = Div(X)/P (X).
If X is compact, then the subgroup of divisor classes of degree zero is denoted by Cl0(X) = Div0(X)/P (X).

(3.9.6) To sum up, if X is compact, then there are exact sequences

0 −→ C∗ −→M(X)∗ div−−→Div(X) −→ Cl(X) −→ 0
0 −→ C∗ −→M(X)∗ div−−→Div0(X) −→ Cl0(X) −→ 0

0 −→ Cl0(X) −→ Cl(X)
deg−−→Z −→ 0.

(3.9.7) Exercise. Show that Cl0(P1(C)) = 0.

(3.9.8) Exercise. Show thatM(P1(C)) = C(z), i.e. every meromorphic function f on P1(C) is a rational
function in the standard coordinate z. [Hint: Consider the divisor of f .]

(3.9.9) If X is not compact, then every divisor on X is principal, i.e. Cl(X) = 0 ([Fo], 26.5).

(3.9.10) Exercise-Definition. Let f : X −→ Y be a non-constant proper holomorphic map between
Riemann surfaces. Then the map

f∗ :
∑
y∈Y

ny(y) 7→
∑
x∈X

exnf(x)(x)

defines a homomorphism of abelian groups f∗ : Div(Y ) −→ Div(X) satisfying

(∀g ∈M(Y )∗) f∗(div(g)) = div(g ◦ f)
(∀D ∈ Div(Y )) deg(f∗(D)) = deg(f) deg(D) (provided X is compact).

(3.9.11) Definition. Let X be a compact Riemann surface and m =
∑

mP (P ) ≥ 0 an effective divisor
with support S = supp(m). Define

DivS(X) = {D ∈ Div(X) | supp(D) ∩ S = ∅}, Div0
S(X) = DivS(X) ∩Div0(X),

Pm(X) = {div(f) | f ∈M(X)∗, (∀P ∈ S) ordP (f − 1) ≥ mP }
Clm(X) = DivS(X)/Pm(X), Cl0m(X) = Div0

S(X)/Pm(X).

The abelian group Clm(X) is called the divisor class group of X with respect to the modulus m.

(3.9.12) Using this notation, the calculations from 3.8.5-6 can be reformulated as follows.
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(3.9.13) Proposition. (i) The maps

D 7→
∫
D

ω,

{
Div0
{0,∞}(P

1(C)) −→ C/2πiZ, ω = dz/z

Div0
{∞}(P

1(C)) −→ C, ω = dz

induce isomorphisms of abelian groups

Cl0(0)+(∞)(P
1(C)) ∼−→ C/2πiZ, Cl02(∞)(P

1(C)) ∼−→ C.

(ii) The maps
(C∗,×) −→ Cl0(0)+(∞)(P

1(C)), a 7→ the class of (a)− (1)

(C,+) −→ Cl02(∞)(P
1(C)), a 7→ the class of (a)− (0)

are isomorphisms of abelian groups.

(3.9.14) Corollary. The maps

P 7→ the class of (P )− (O), D 7→
∫
D

dy

x

induce isomorphisms of abelian groups

(C(C),�) ∼−→ Cl0(P+)+(P−)(C̃(C)) ∼−→ C/2πZ.

Proof. Apply the isomorphism λ from Exercise 3.8.4.
(3.9.15) Why is this interesting? The point is that the group law “�” on C(C), which was originally
defined by transporting the additive group law “+” on C/2πZ via the composite bijection

C(C) ∼−→ C/2πZ, P 7→
∫ P

O

dy

x
,

admits a purely algebraic description, via the bijection

C(C) ∼−→ Cl0(P+)+(P−)(C̃(C)), P 7→ the class of (P )− (O).

(3.9.16) Exercise. Let m = (a1) + · · · + (an) + (∞) ∈ Div(P1(C)), where a1, . . . , an ∈ C (n ≥ 0) are
distinct points in C. Determine Cl0m(P1(C)), by generalizing 3.9.13(i).

4. Cubic curves y2 = f(x)

4.1 Basic facts

(4.1.1) Let

f(x) = (x− e1)(x− e2)(x− e3) = x3 + ax2 + bx+ c ∈ C[x]

be a cubic polynomial with distinct roots ej ∈ C. Let E be the projectivization of the affine plane curve
y2 = f(x), i.e.

E : Y 2Z = (X − e1Z)(X − e2Z)(X − e3Z)

(where x = X/Z, y = Y/Z). We know from 3.7.7 that E is a smooth projective plane curve over C with
a single point at infinity O = (0 : 1 : 0) (E(C) ∩ {Z = 0} = {O}). By 3.7.5, E(C) is a compact Riemann
surface (one can observe directly that E(C) is connected; see the pictures in [Re], p.44 or [Cl], 2.3).
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(4.1.2) Exercise. Show that the projection map

p : E(C) −→ P1(C), p(x, y) = x, p(O) =∞

is holomorphic, of degree 2 and the set of ramification points {(e1, 0), (e2, 0), (e3, 0), O} (with ramification
indices equal to 2).

(4.1.3) Corollary. By the Riemann-Hurwitz formula, the genus g = g(E(C)) of E(C) satisfies 2g − 2 =
(−2) · 2 + 4(2− 1) = 0, hence g = 1.

4.2 Holomorphic differentials on E(C)

(4.2.1) The affine coordinates x and y are non-constant meromorphic functions on E(C) satisfying y2 =
f(x); thus

ω =
dx

2y
=

dy

f ′(x)
∈ Ω1

mer(E(C))

is a (non-zero) meromorphic differential on E(C).

(4.2.2) Proposition. ω is a holomorphic differential on E(C) without zeros, i.e. ordP (ω) = 0 for all
P ∈ E(C) (⇐⇒ div(ω) = 0).

Proof. Let P = (xP , yP ) ∈ E(C)− {O} be a point on the affine curve

V = E − {O} : h(x, y) = y2 − f(x) = 0.

We know that P is a smooth point; this means that either 0 6= ∂h/∂x(P ) = −f ′(xP ), in which case y − yP
is a local coordinate at P and

ordP (ω) = ordP

(
d(y − yP )
f ′(x)

)
= 0,

or 0 6= ∂h/∂y(P ) = 2yP , in which case x− xP is a local coordinate at P and

ordP (ω) = ordP

(
d(x− xP )

2y

)
= 0.

For P = O we pass to the coordinates u = x/y, v = 1/y used in 3.7.7; then O corresponds to (u, v) = (0, 0)
and the affine part E ∩ {Y 6= 0} of E is given by the equation

g(u, v) = v − (u− e1v)(u− e2v)(u− e3v) = 0.

As ∂g/∂v(0, 0) 6= 0, u is a local coordinate at O, hence

ordO(u) = 1, ordO(v) ≥ 1, ordO(u− ejv) ≥ 1, ordO(v) =
3∑
j=1

ordO(u− ejv) ≥ 3.

By 3.2.2.7, we have

ordO(u− ejv) = min(1, ordO(v)) = 1, ordO(v) =
3∑
j=1

ordO(u− ejv) = 3,

hence (using 3.3.8)

ordO(y) = ordO(1/v) = −3, ordO(x) = ordO(u/v) = −2, ordO(dx) = −3, ordO(dx/2y) = 0,

as claimed.
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(4.2.3) Proposition. ω generates the space of holomorphic differentials on E(C): Ω1(E(C)) = C · ω.

Proof. If ω1 ∈ Ω1(E(C)) − {0}, then ω1 = f · ω for some (non-zero) meromorphic function f ∈ M(E(C))
(by 3.3.14). As ω1 is holomorphic, we obtain from 4.2.2

(∀P ∈ E(C)) 0 ≤ ordP (ω1) = ordP (ω) + ordP (f) = ordP (f),

hence f ∈ O(E(C)) is holomorphic; however, O(E(C)) = C, by 3.2.3.3.
(4.2.4) Analytic genus. Let X be an arbitrary compact Riemann surface. The dimension of the space of
holomorphic differentials

gan(X) := dimC Ω1(X)

is sometimes referred to as the analytic genus of X. It follows from the Riemann-Roch Theorem (see ??
below) that

(∀ω ∈ Ω1
mer(X)− {0}) deg(div(ω)) = 2gan(X)− 2 (4.2.4.1)

(note that deg(div(ω)) does not depend on the choice of ω, by combining 3.3.16 and 3.3.11).
If f : X −→ Y is a non-constant holomorphic map between compact Riemann surfaces and ω ∈

Ω1
mer(Y )− {0}, then Lemma 3.3.13 implies that

div(f∗(ω)) = f∗(div(ω)) +
∑
x∈X

(ex − 1)(x). (4.2.4.2)

Combining (4.2.4.1-2) with 3.9.10 we obtain the Riemann-Hurwitz formula 3.6.3, this time for the ana-
lytic genus. As gan(P1(C)) = 0 = g(P1(C)) (exercise!), letting f : X −→ P1(C)) be any non-constant
meromorphic function, the comparison of the two Riemann-Hurwitz formulas shows that

gan(X) = g(X). (4.2.4.3)

In particular,

if g(X) = 1, then (∀ω ∈ Ω1(X)− {0}) div(ω) = 0, (4.2.4.4)

as div(ω) is an effective divisor of degree 0.
For X = E(C), we have verified (4.2.4.1,3,4) explicitly.

(4.2.5) Hyperelliptic curves. Let f(x) ∈ C[x] be a polynomial of even degree deg(f) = 2m ≥ 4 with
distinct roots. As in 3.7.8, put g(u) = u2mf(1/u) ∈ C[u] and consider the smooth affine plane curves over
C

V : y2 − f(x) = 0, W : v2 − g(u) = 0

and the isomorphism

u = 1/x, v = y/xm, x = 1/u, y = v/um (4.2.5.1)

between V ∩{x 6= 0} = V −{P+, P−} and W ∩{u 6= 0} = W −{O+, O−}, where P± = (x, y) = (0,±
√
f(0)),

O± = (u, v) = (0,±
√
g(0)) (we have O+ 6= O−, but the points P+, P− are not necessarily distinct). Glueing

together V (C) and W (C) along their open subsets V (C)−{P+, P−}, W (C)−{O+, O−} using the formulas
(4.2.5.1), we obtain a Riemann surface X (cf. 4.2.6(i)). In fact, X = U(C), where U is the curve from 3.7.8.

(4.2.6) Exercise. Let p : X −→ P1(C) be the map

p(x, y) = (x : 1), (x, y) ∈ V (C); p(u, v) = (1 : u), (u, v) ∈W (C).

Show that
(i) The natural topology on X is Hausdorff.
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(ii) X is connected (draw a picture! – see [Ki], 1.2.3).
(iii) p is a proper holomorphic map of degree deg(p) = 2.
(iv) X is compact.
(v) The ramification points of p are (x, y) = (xj , 0), where x1, . . . , x2m ∈ C are the (distinct) roots of f(x).

(4.2.7) It follows from 4.2.6 and 3.6.5 that g(X) = m− 1. The same calculation as in the first half of the
proof of Proposition 4.2.2 shows that the meromorphic differential

ω :=
dx

y
=

2 dy
f ′x
∈ Ω1

mer(X)

is holomorphic on V (C) and has no zeros there. Similarly, du/v is holomorphic on W (C) and has no zeros
there. The formulas (4.2.5.1) imply that, for each k ∈ Z,

xkω =
xk dx

y
= −u

m−k−2 du

v
,

hence

div(xkω) = k(P+) + k(P−) + (m− k− 2)(O+) + (m− k− 2)(O−), deg(div(xkω)) = 2m− 4 = 2g(X)− 2,

as

div(x) = (P+) + (P−)− (O+)− (O−), div(u) = −div(x).

It follows that
xk dx

y
∈ Ω1(X) ⇐⇒ 0 ≤ k ≤ m− 2; (4.2.7.1)

in fact, the differentials (4.2.7.1) form a basis of Ω1(X), as dimC(Ω1(X)) = g(X) = m− 1. This is why they
appeared in (2.2.7.5)!

In the special case m = 2 ( ⇐⇒ deg(f) = 4), we obtain that div(ω) = 0, verifying (4.2.4.4) explicitly.
The proof of 4.2.3 then yields directly Ω1(X) = C · ω, without using the general theory invoked in 4.2.4.

(4.2.8) Exercise. Let V : f(x, y) = 0 be a smooth affine plane curve over C of degree deg(f) = d ≥ 1
such that its projectivization Ṽ : F (X,Y, Z) = Zdf(X/Z, Y/Z) = 0 ⊂ P2 intersects the line at infinity

at d distinct points Ṽ (C) ∩ {Z = 0} = {P1, . . . , Pd}. Show that Ṽ is smooth and that the divisor of the
meromorphic differential

ω =
dx

f ′y
= −dy

f ′x
∈ Ω1

mer(Ṽ (C))− {0}

is equal to

div(ω) = (d− 3)
d∑
j=1

(Pj),

hence the genus of Ṽ (C) is equal to

g(Ṽ (C)) = 1 + div(ω)/2 =
(d− 1)(d− 2)

2
.

Deduce that the differentials

xiyjω (0 ≤ i, j; i+ j ≤ d− 3)

form a basis of Ω1(Ṽ (C)), hence
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Ω1(Ṽ (C)) = {h(x, y)ω |h(x, y) ∈ C[x, y], deg(h) ≤ d− 3}.

4.3 Topology of E(C)

(4.3.1) We know from 4.1.3 that E(C) is a compact oriented surface of genus g = 1. This implies
that the fundamental group π1(E(C), O) is abelian, naturally isomorphic to the first homology group
H1(E(C),Z) ∼−→ Z2. Choose a Z-basis [γ1], [γ2] of H1(E(C),Z) = Z[γ1]⊕ Z[γ2] and put

ωj =
∫

[γj ]

ω ∈ C (j = 1, 2).

The group of periods of ω on E(C) is then equal to

L = {
∫
γ

ω | γ a closed path on E(C)} = Zω1 + Zω2 ⊂ C.

(4.3.2) Proposition. L is a lattice in C, i.e. the periods ω1, ω2 ∈ C are linearly independent over R. More
precisely, if [γ1], [γ2] are represented by closed paths γ1, γ2 based at O, disjoint outside O, with tangent vectors
to γ2, γ1 (in this order) forming a positively oriented basis of the tangent space at O, then Im(ω1ω2) > 0.

Proof. Cutting E(C) along the paths γ1, γ2, we obtain a simply connected domain D. For P ∈ D, define
f(P ) =

∫ P
O
ω, where the integral is taken along (any) path in D. This defines a holomorphic function

f ∈ O(D) satisfying df = ω. As

d(fω) = df ∧ ω + fdω = ω ∧ ω

in D, Stokes’ theorem yields

i

2

∫
E(C)

ω ∧ ω =
i

2

∫
∂D

fω. (4.3.2.1)

As the values of f(P ) on two points of ∂D corresponding to the same point of γ1 (resp. γ2) differ by ω2

(resp. by ω1), the integral (4.3.2.1) is equal to

i

2
(ω1ω2 − ω1ω2) = Im(ω1ω2).

(see ([Gr-Ha], Sect. 2.2; [MK], 3.9) for a more general calculation). Proposition follows, as (4.3.2.1) is
positive by (3.5.4.1)

(4.3.3) Corollary. The quotient C/L is a compact Riemann surface and the canonical projection C −→
C/L is an unramified covering.

(4.3.4) Attentive readers will have noticed that the proof of Proposition 4.3.2 works for any non-zero
holomorphic differential ϕ on any compact Riemann surface X of genus 1. However, it follows from the
Riemann-Roch Theorem that every such pair (X,ϕ) is isomorphic to (E(C), ω), for a suitable cubic polyno-
mial f(x).

4.4 The Abel-Jacobi map

(4.4.1) As in 0.2.1, one can define the Abel-Jacobi map for E(C) by the formula

α : E(C) −→ C/L, α(P ) =
∫ P

O

ω (modL).

This is a holomorphic map satisfying α∗(dz) = ω and the induced map on homology groups
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α∗ : H1(E(C),Z) −→ H1(C/L,Z) = L

is an isomorphism, as

{
∫
γ

dz | γ a closed path on C/L} = L.

Above, the canonical identification of L and the first homology group of C/L is defined as follows: one
associates to each u ∈ L the homology class of the projection to C/L of any path in C from 0 to u (this is
well-defined, as C is contractible).

(4.4.2) Theorem. The map α : E(C) −→ C/L is an isomorphism of compact Riemann surfaces.

Proof. By 3.2.3.4 it is sufficient to show that α is bijective. For each P ∈ E(C),

ordP (α∗(d(z − α(P )))) = ordP (α∗(dz)) = ordP (ω) = 0,

hence eP = 1, by 3.3.13 (in other words, we use (4.2.4.2) for f = α and ω = dz). This implies that α is an
unramified covering, by 3.2.3.5. As the induced map on fundamental groups

π1(E(C), O) = H1(E(C),Z) α∗−−→H1(C/L,Z) = π1(C/L, 0)

is an isomorphism, theory of covering spaces implies that α is a bijection, as required.
(4.4.3) The inverse of α. The Abel-Jacobi map α is an analogue of the function arcsin (resp. log) from
0.1 (resp. 0.2.3). Its inverse is then a natural generalization of the functions (sin, cos) (resp. exp).

For z ∈ C/L−{0}, α−1(z) ∈ E(C)−{O} is given by a pair of holomorphic functions U, V on C/L−{0}:

α−1(z) = (U(z), V (z)) = (x, y).

The relations y2 = f(x) and dx/2y = α∗(dz) imply that

V (z)2 = f(U(z)) = U(z)3 + aU(z)2 + bU(z) + c,

U ′(z) dz/2V (z) = dz =⇒ U ′(z) = 2V (z),

hence

U ′(z)2 = 4(U(z)3 + aU(z)2 + bU(z) + c).

The functions U(z), V (z) are meromorphic on C/L and satisfy

ord0(U(z)) = ordO(x) = −2, ord0(V (z)) = ordO(y) = −3,

by the calculation at the end of the proof of 4.2.2.
U(z) and V (z) are prototypical examples of elliptic functions, i.e. doubly periodic (with respect to ω1

and ω2) meromorphic functions on C. It would be interesting to have a more direct construction of these
functions. This will be (among others) the subject matter of the next three sections.
(4.4.4) It follows from (4.2.4.4) that the discussion in 4.4.1 and the proof of Theorem 4.4.2 apply to any
compact Riemann surface X of genus 1 and any non-zero holomorphic differential ω ∈ Ω1(X) − {0} (in
particular, to X and ω from 4.2.7 for m = 2).
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5. Elliptic functions (general theory)

5.1 Basic facts

Throughout Section 5, L ⊂ C is a lattice, i.e. an additive subgroup of the form L = Zω1 + Zω2, where
ω1, ω2 ∈ C are linearly independent over R.
(5.1.1) Change of basis. We have L = Zω′1 + Zω′2 if and only if

ω′1 = aω1 + bω2

ω′2 = cω1 + dω2,

(
a b

c d

)
∈ GL2(Z).

Recall that GLn(R) denotes, for every commutative ring R, the group of those invertible n × n matrices
with coefficients in R whose inverse also has entries in R (i.e. whose determinant is invertible in R).

We often consider only positively oriented bases ω1, ω2, i.e. those for which Im(ω1/ω2) > 0. In that
case the new basis ω′1, ω

′
2 is positively oriented if and only if(

a b

c d

)
∈ {g ∈ GL2(Z) |det(g) > 0} = SL2(Z).

(5.1.2) A function F : C −→ C (resp. −→ P1(C)) is called L-periodic if it factors as

F : C
pr−−→C/L

f−−→C (resp.
f−−→P1(C)),

i.e. if

F (z + u) = F (z) (z ∈ C, u ∈ L).

As the projection pr is an unramified covering, F is holomorphic (resp. meromorphic) if and only f is.

(5.1.3) Definition. An elliptic function (with respect to L) is a meromorphic function f ∈ M(C/L)
(equivalently, an L-periodic meromorphic function F = f ◦ pr ∈M(C)).

(5.1.4) Lemma. A holomorphic elliptic function is constant.

Proof. C/L is a compact Riemann surface.
(5.1.5) Our goal is to describe explicitly all elliptic functions with respect to L. We begin by investigating
their divisors.

5.2 Divisors of elliptic functions

(5.2.1) Proposition. Let f ∈M(C/L)− {0}. Then∑
x∈C/L

ordx(f) = 0 ∈ Z

∑
x∈C/L

ordx(f) · x = 0 ∈ C/L

(in the second statement, the sum is taken with respect to the addition on C/L).

Proof. Compute the integral of f ′(z)/f(z) dz (resp. of zf ′(z)/f(z) dz) over the boundary ∂D of a funda-
mental parallelogram D = {z = α+ t1ω1 + t2ω2 | 0 ≤ t1, t2 ≤ 1} for the action of L on C (for α ∈ C chosen
in such a way that f(z) has no zeros nor poles on ∂D). See ([La], Ch.1, Thm. 2,3; [Si 1], Ch. VI, Thm. 2.2)
for more details.
(5.2.2) This result can be reformulated as follows: the group of principal divisors P (C/L) ⊂ Div0(C/L) is
contained in the kernel of the “sum” homomorphism
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� : Div(C/L) −→ C/L,
∑

nj(Pj) 7→
∑

njPj (5.2.2.1)

(where the second sum is the addition on C/L). In other words, � induces a homomorphism (surjective)

� : Cl0(C/L) −→ C/L. (5.2.2.2)

The next step is to show that the conditions in 5.2.1 characterize divisors of elliptic functions, i.e. that
(5.2.2.2) is an isomorphism generalizing the isomorphisms from 3.9.13(ii) and 3.9.14.

5.3 Construction of elliptic functions (Jacobi’s method)

(5.3.1) Change of variables. It is often useful to normalize the lattice L and the torus C/L by the
following changes of variables (isomorphisms of compact Riemann surfaces):

C/(Zω1 + Zω2) ∼−→ C/(Zτ + Z), z 7→ z/ω2 (5.3.1.1)

(where τ = ω1/ω2, Im(τ) > 0) and

C/(Zτ + Z) ∼−→ C∗/qZ, z 7→ t = e2πiz (q = e2πiτ , 0 < |q| < 1). (5.3.1.2)

In other words, we get rid of the period 1 by applying the exponential map

C/Z ∼−→ C∗, z 7→ e2πiz,

which replaces the additive periodicity with respect to τ by the multiplicative periodicity with respect to q.
(5.3.2) Multiplicative periodicity. In terms of the multiplicative variable t = exp(2πiz), an elliptic
function f ∈M(C∗/qZ) is the same thing as a meromorphic function f ∈M(C∗) satisfying

f(qt) = f(t) (t ∈ C∗, |q| < 1). (5.3.2.1)

A natural attempt to construct such a function would be to consider the following infinite product:

f(t) =
∏
n∈Z

g(qnt) (5.3.2.2)

for a suitable function g(t). Taking the simplest choice of g(t) = 1− t (which has a simple zero at the origin
t = 1 of the multiplicative group C∗), we see that the two parts of the infinite product∏

n∈Z

(1− qnt) =
∏
n≥0

(1− qnt)
∏
n<0

(1− qnt) (5.3.2.3)

have a completely different behaviour: as
∑
n≥0 |qn| < ∞, the product over n ≥ 0 is convergent, but the

terms of the product over n < 0 have absolute values tending to infinity (since |q−1| > 1).
This means that we have to modify the terms corresponding to n < 0 in (5.3.2.3) to ensure the conver-

gence. A natural guess would be to replace (1− qnt) by (1− q−nt−1), i.e. to consider the function

a(t) = (1− t)
∞∏
n=1

(1− qnt)(1− qnt−1) (t ∈ C∗, |q| < 1). (5.3.2.4)

(5.3.3) Proposition. (i) The infinite product (5.3.2.4) is uniformly convergent on compact subsets of C∗

to a holomorphic function a(t) ∈ O(C∗).
(ii) The function a(t) has simple zeros at the points t = qnr (n ∈ Z) and no other zeros in C∗.
(iii) a(qt) = (1− t−1)/(1− t)a(t) = −t−1a(t) (t ∈ C∗).

Proof. (i),(ii) This follows from the convergence of
∑
n |q|n, by ([Ru 2], Thm. 15.6). The formula in (iii) is

proved by a direct calculation.
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(5.3.4) Back to the additive variables. Rewriting a(t) in terms of the additive variable z ∈ C, we
define

A(z) = a(e2πiz).

By 5.3.3, A(z) is a holomorphic function on C with simple zeros at the points of the lattice z ∈ Zτ + Z (and
no other zeros) satisfyng

A(z + 1) = A(z)

A(z + τ) = −e−2πizA(z).
(5.3.4.1)

Using these properties of A(z) we are now ready to prove the promised converse of 5.2.1.

(5.3.5) Proposition. Let L ⊂ C be a lattice and D =
∑
j nj(Pj) ∈ Div(C/L) a divisor satisfying

∑
nj =

0 ∈ Z and
∑
njPj = 0 ∈ C/L. Then D = div(f) for some meromorphic function f ∈ M(C/L)− {0} (f is

determined up to multiplication by a constant, by 3.9.4).

Proof. Applying (5.3.1.1), we can assume that L = Zτ + Z, Im(τ) > 0. Writing D =
∑

((Pj) − (Qj)) with∑
Pj =

∑
Qj ∈ C/L (where the points Pj , Qj ∈ C/L are not necessarily distinct), there exist representatives

aj (resp. bj) of Pj (resp. Qj) in C such that
∑
aj =

∑
bj ∈ C. Define

F (z) =
∏
j

A(z − aj)
A(z − bj)

.

This is a meromorphic function on C satisfying F (z + 1) = F (z) and

F (z + τ)
F (z)

=
∏
j

A(z − aj + τ)
A(z − aj)

A(z − bj)
A(z − bj + τ)

=
∏
j

exp(−2πi((z − aj)− (z − bj))) = 1,

since
∑
aj =

∑
bj . This means that F is L-periodic, F = f ◦ pr for some f ∈M(C/L). As each term

A(z − aj)
A(z − bj)

has simple zeros (resp. simple poles) at the points aj + L (resp. bj + L), the divisor of f is equal to∑
((pr(aj))− (pr(bj))) =

∑
((Pj)− (Qj)) = D.

(5.3.6) Theorem. The homomorphism � : Div(C/L) −→ C/L defined in (5.2.2.1) induces an isomorphism
of abelian groups

Cl0(C/L) ∼−→ C/L,

with inverse given by the map
a 7→ the class of (a)− (0).

Proof. Combine 5.2.1 and 5.3.5.
(5.3.7) One can deduce from this isomorphism all function theory on the torus C/L.
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6. Theta functions

We shall only scratch the surface of the enormously rich theory of theta functions, which is treated in great
detail in [Mu TH] (and also in [Web], [Mu AV], Ch. 1; [MK]; [Gr-Ha], 2.6, [Wei 1] and [Fa-Kr 2]).

6.1 What is a theta function?

(6.1.1) Definition. A theta function (with respect to a lattice L ⊂ C) is a holomorphic function F (z) ∈
O(C) satisfying the functional equations

F (z + u) = ea(u)z+b(u)F (z) (z ∈ C, u ∈ L) (6.1.1.1)

(for some constants a(u), b(u) ∈ C depending on u ∈ L).

(6.1.2) It is sufficient to check the condition (6.1.1.1) for u belonging to a set of generators of L. This
means that a theta function with respect to L = Zω1 + Zω2 is characterized by the functional equations

F (z + ω1) = ea1z+b1F (z)

F (z + ω2) = ea2z+b2F (z),
(6.1.2.1)

where a1, a2, b1, b2 ∈ C. Jacobi’s method of constructing elliptic functions (with respect to L) consists in
taking a quotient F1/F2 of two non-zero solutions of (6.1.2.1).

(6.1.3) Example: If L = Zτ + Z, q = exp(2πiτ) and t = exp(2πiz), then the function

A(z) = (1− t)
∞∏
n=1

(1− qnt)(1− qnt−1)

from 5.3.4 is a theta function (with respect to L).

(6.1.4) Question. What is a theta function? It is certainly not a function on C/L (unless it is constant).

(6.1.5) Answer. Theta functions are sections of line bundles on C/L.

6.2 A digression on line bundles

Line bundles on Riemann surfaces are discussed in ([Fo], Sect. 29, 30); general theory of vector bundles over
complex manifolds is treated in [Gr-Ha]. We follow closely (a small part of) [Mu AV], Ch. 1.

(6.2.1) Definition. Let X be a complex manifold (e.g. a Riemann surface). A (holomorphic) line
bundle over X is a complex manifold L equipped with a surjective holomorphic map p : L −→ X such
that:
(i) The fibre Lx = p−1(x) over each x ∈ X is a vector space over C of dimension 1.
(ii) L is locally isomorphic to the product X×C in the following sense: there exists an open covering {Uα}
of X and holomorphic isomorphisms fα : p−1(Uα) ∼−→ Uα ×C which make the diagram

p−1(Uα) ∼−→ Uα ×Cyp ypr
Uα ==== Uα

commutative and induce linear maps on the fibres over each x ∈ Uα (above, pr denotes the projection on
the first factor). A (holomorphic) section of L is a holomorphic map s : X −→ L such that p ◦ s = id.
The set Γ(X,L ) of holomorphic sections of L is a module over O(X). An isomorphism between L and
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another (holomorphic) line bundle p′ : L ′ −→ X is a holomorphic isomorphism f : L
∼−→ L ′ satisfying

p′ ◦ f = p, which is linear on each fibre p−1(x) (x ∈ X).

(6.2.2) More generally, if we replace C in 6.2.1(ii) by CN (and 1 in 6.2.1(i) by N), we obtain the definition
of a (holomorphic) vector bundle of rank N over X. Line bundles are much easier to study then vector
bundles of rank N > 1; the main reason being that the group of automorphisms of the fibre GL1(C) = C∗

is abelian.
(6.2.3) Examples: (1) The trivial line bundle is the product pr : X ×C −→ X. There is a canonical
isomorphism

O(X) ∼−→ Γ(X,X ×C), f 7→ s(x) = (x, f(x)).

(2) If p : L −→ X is a (holomorphic) line bundle and f : Y −→ X is a holomorphic map (where Y is
another complex manifold), then the pull-back of L via f

f∗L = {(y, `) ∈ Y ×L | f(y) = p(`)}

with the map q(y, `) = y is a (holomorphic) line bundle over Y .
(3) By definition of the projective space,

PN (C) = {V ⊂ CN+1 | dim(V ) = 1}.

The tautological line bundle over PN (C) is

L = {(v, V ) ∈ CN+1 ×PN (C) | v ∈ V }

together with the map p(v, V ) = V .
(6.2.4) The basic setup. Assume that Y is a complex manifold, G a group acting on Y by holomorphic
automorphisms and that the action of each g ∈ G− {e} has no fixed points (i.e. gy 6= y for all y ∈ Y ).

We are going to construct line bundles on the quotient X = G\Y from lifts of the G-action from Y to
the trivial line bundle Y ×C. The reader should keep in mind the following two examples:

(A) Y = C, G = L (a lattice acting by translations), X = C/L.
(B) Y = CN+1 − {0}, G = C∗ (acting by multiplication), X = PN (C) (N ≥ 1).
(6.2.5) Lifted action. In order to lift the G-action from Y to the trivial line bundle Y × C we must
construct, for each g ∈ G, a holomorphic map ĝ : Y × C −→ Y × C which makes the following diagram
commutative:

Y ×C
ĝ−−−−→ Y ×Cypr ypr

Y
g−−−−→ Y,

(6.2.5.1)

acts on each fiber {y} ×C by a linear automorphism and such that

ĝ1g2 = ĝ1ĝ2 (g1, g2 ∈ G). (6.2.5.2)

In concrete terms, the linearity on the fibers amounts to

ĝ(y, t) = (gy, αg(y) t), (y ∈ Y, t ∈ C) (6.2.5.3)

where αg : Y −→ C∗ is an invertible holomorphic function on Y . The identity (6.2.5.2) is then equivalent to

αg1g2(y) = αg1(g2(y))αg2(y). (6.2.5.4)

Conversely, if αg : Y −→ C∗ is a set of holomorphic functions satisfying the identity (6.2.5.4), then (6.2.5.3)
defines the lift of the G-action from Y to Y ×C.
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(6.2.6) A remark for Bourbakists (only). The identity (6.2.5.4) is, essentialy, a 1-cocycle identity for
the G-action on the group O(Y )∗ of invertible holomorphic functions on Y . Note, however, that G acts
on O(Y )∗ on the right (by α ∗ g(y) = α(gy)), since we have started with a left G-action on Y . It is more
customary to let G act on Y on the right, which then leads to the “usual” 1-cocycle relation for a left G-
action on O(Y )∗. Of course, if the group G is abelian (which is the case in the two examples 6.2.4(A),(B)),
there is no difference between left and right actions.
(6.2.7) Example: If, for each g ∈ G, αg(y) = αg is a constant function, then (6.2.5.4) says that the map

ρ : G −→ C∗, ρ(g) = αg

is a group homomorphism. Using this observation, we can define for each integer d ∈ Z a lifted action in
Example 6.2.4(B) by the formula

ĝ(y, t) = (gy, gdt). (6.2.7.1)

(6.2.8) Definition of L . Given the lifted action as in 6.2.5, the commutativity of the diagram (6.2.5.1)
implies that the projection pr induces a map between the quotient spaces

p : L = G\(Y ×C) −→ G\Y = X, p(π̂(y, t)) = π(y).

where

π : Y −→ G\Y, π̂ : Y ×C −→ G\(Y ×C)

denote the canonical projections. In the generality we are considering, L and G are merely topological
spaces (equipped with the quotient topology) and p is a continuous map. However, the fact that G acts on
Y without fixed points implies that

π̂(y, t1) = π̂(y, t2) ⇐⇒ t1 = t2, (6.2.8.1)

hence each fibre p−1(π(y)) consists of the distincts points π̂(y, t) (t ∈ C). Moreover, the structure of the
complex vector space on p−1(π(y)) (using the coordinate t) depends only on π(y) (as each ĝ acts linearly on
the fibers of pr).
(6.2.9) Sections of L . Disregarding for the moment the question of holomorphic structure, we want
to describe set-theoretical sections of p : L −→ X, i.e. maps s : X −→ L satisfying p ◦ s = id. The
commutative diagram

Y ×C π̂−−→ G\(Y ×C)ypr yp
Y

π−−→ G\Y

together with (6.2.8.1) imply that that there is a uniquely determined function F : Y −→ C such that

s ◦ π(y) = π̂(y, F (y)) (∀y ∈ Y ). (6.2.9.1)

For which functions F does (6.2.9.1) define a (set-theoretical) section s of L ? The necessary and sufficient
condition is that the R.H.S. of (6.2.9.1) should depend only on π(y), i.e.

π̂(gy, F (gy)) = π̂(y, F (y)) (∀y ∈ Y, ∀g ∈ G),

which is equivalent to

π̂(gy, F (gy)) = π̂(y, F (y)) = π̂(ĝ(y, F (y))) = π̂(gy, αg(y)F (y)),

hence, by (6.2.8.1), to
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F (gy) = αg(y)F (y) (∀y ∈ Y, ∀g ∈ G). (6.2.9.2)

Note the similarity to the functional equation (6.1.1.1) of theta functions!

(6.2.10) In good circumstances, both X and L are complex manifolds, p : L −→ X is a line bundle and
the description (6.2.9.1-2) of the sections of L also holds in the holomorphic category, inducing a bijection
between

Γ(X,L ) ∼−→ {F ∈ O(Y ) |F satisfies (6.2.9.2)}.

The line bundles L on X obtained by this construction are not completely arbitrary: by definition, their
pull-backs to Y are trivial, π∗(L ) = Y ×C.

(6.2.11) Exercise. Show that such “good circumstances” occur in the situation of 3.2.1.6 (in particular,
in Example 6.2.4(A)).

(6.2.12) Example: In the situation of 6.2.4(B), Γ(X,L ) is isomorphic to the complex vector space of
holomorphic functions

F : CN+1 − {0} −→ C, F (gy) = gd F (y) (∀g ∈ C∗). (6.2.12.1)

(6.2.13) Exercise. Show that the space (6.2.12.1) consists of all homogeneous polynomials of degree d
(resp. is trivial) if d ≥ 0 (resp. if d < 0). Show that the case d = −1 corresponds to the tautological line
bundle from 6.2.3(3).

(6.2.14) Equivalent lifts. We obtain isomorphic objects if we reparametrize the trivial line bundle
Y ×C −→ Y (linearly along the fibers), i.e. by a holomorphic isomorphism (a “gauge transformation”)

r : Y ×C ∼−→ Y ×C, (y, t) 7→ (y, β(y) t),

where β : Y −→ C∗ is an invertible holomorphic function. This leads to a new lift ĝnew of the G-action,
given by the commutative diagram

Y ×C
ĝ−−→ Y ×Cyor yor

Y ×C
ĝnew

−−→ Y ×C.

Inother words,

(gy, αnew
g (y)β(y) t) = gnew(r(y, t)) = r(ĝ(y, t)) = r(gy, αg(y) t) = (gy, β(gy)αg(y) t),

which is equivalent to

αnew
g (y) =

β(gy)
β(y)

αg(y) (y ∈ Y, g ∈ G). (6.2.14.1)

In other words, αnew
g and αg differ by a 1-coboundary.

Under this reparametrization, L does not change, but the projection map π̂ : Y ×C −→ L is replaced
by π̂new satisfying π̂new ◦ r = π̂. Similarly, the description of the sections (6.2.9.1-2) of L still holds, if we
replace F (y) by

F new(y) = β(y)F (y). (6.2.14.2)

(6.2.15) Tensor products. All standard constructions of linear algebra can be applied to vector bundles.
In particular, given two (holomorphic) line bundles L ,L ′ on X, one can form new line bundles L ⊗L ′

and L −1 (the dual of L ).
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We do not give here the definition in the general case, only for L constructed as in 6.2.8: if L (resp.
L ′) is constructed from the functions {αg(y)} (resp. {α′g(y)}) satisfying (6.2.5.4), then L ⊗L ′ (resp. L −1)
is defined using {αg(y)α′g(y)} (resp. {αg(y)−1}). In particular, there is a product

Γ(X,L )⊗C Γ(X,L ′) −→ Γ(X,L ⊗L ′),

defined as follows: if s ∈ Γ(X,L ) (resp. s′ ∈ Γ(X,L ′)) corresponds to a function F : Y −→ C (resp.
F ′ : Y −→ C) satisfying (6.2.9.2) (resp. its analogue with α′g(y) instead of αg(y)), then the tensor product
s⊗ s′ corresponds to the function F (y)F ′(y).

(6.2.16) Exercise. Let L be a line bundle on a compact Riemann surface X. If both L and L −1 have a
non-zero holomorphic section, then L is (isomorphic to) the trivial line bundle. [This gives a quick proof of
the case d < 0 in 6.2.13.]

6.3 Theta functions revisited

(6.3.1) Let us apply the general discussion from 6.2.4-15 to the objects from Example 6.2.4(A): Y = C,
G = L (a lattice in C acting by translations), X = C/L. Following 6.2.5, we need a collection of holomorphic
functions αu(z) ∈ O(C) (u ∈ L) satisfying

αu+v(z) = αu(z + v)αv(z) (u, v ∈ L, z ∈ C); (6.3.1.1)

they define an action

û(z, t) = (z + u, αu(z) t) (u ∈ L)

on C×C and – by 6.2.11 – a holomorphic line bundle L = L\(C×C) over X. The sections of L correspond
to holomorphic functions F ∈ O(C) satisfying

F (z + u) = αu(z)F (z) (u ∈ L, z ∈ C). (6.3.1.2)

If the functions αu(z) are replaced equivalent functions

αnew
u (z) =

β(z + u)
β(z)

αu(z), (6.3.1.3)

where β : C −→ C∗ is an invertible holomorphic function, then the line bundle remains the same.

(6.3.2) Proposition. (i) Every holomorphic line bundle on C/L is obtained by the above construction.
(ii) For every solution {αu(z)} of (6.3.1.1) there is an equivalent solution (6.3.1.3) of the form

αnew
u (z) = ea(u)z+b(u) (a(u), b(u) ∈ C).

(6.3.3) We are not going to prove 6.3.2 in this course. However, a few comments may be helpful:
(1) The statement (i) is a consequence of the fact that every (holomorphic) line bundle on C is trivial.
(2) In fact, if Y is a non-compact Riemann surface, every (holomorphic) line bundle on Y is trivial ([Fo],
30.3). This applies, in particular, to C and the unit disc ∆ = {z ∈ C | |z| < 1}. If X is a Riemann surface
not isomorphic to P 1(C), the the universal covering Y of X is isomorphic either to C or to ∆, and X = G\Y ,
where the fundamental group G = π1(X,x0) acts on Y as in 3.2.1.6. This implies that every (holomorphic)
line bundle on X can be obtained by the construction 6.2.8 applied to this particular pair Y,G.
(3) An elegant cohomological proof of the classification of line bundles over n-dimensional complex tori
Cn/L can be found in ([Mu AV], Ch. 1). See also [Wei 1] and [MK].
(6.3.4) The integrality condition. Assume that L is the line bundle on C/L defined by the collection
of functions

αu(z) = ea(u)z+b(u) (a(u), b(u) ∈ C).
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The associativity condition (6.3.1.1) is then equivalent to

a(u+ v) = a(u) + a(v)
b(u+ v) ≡ b(u) + b(v) + a(u)v (mod 2πiZ).

(6.3.4.1)

Interchanging u and v in (6.3.4.1), we see that the alternating bilinear form

(u, v) 7→

∣∣∣∣∣ u v

a(u) a(v)

∣∣∣∣∣ ∈ 2πiZ (u, v ∈ L) (6.3.4.2)

on L has values in 2πiZ. Topologists will recognize in this bilinear form the first Chern class of L

c1(L ) ∈ H2(C/L, 2πiZ) = Hom(Λ2H1(C/L,Z), 2πiZ).

If L = Zω1 +Zω2, then the relations (6.3.4.1) determine the constants a(u), b(u) (u ∈ L), as long as we know
the values of a(ωj), b(ωj) ∈ C (j = 1, 2), which should satisfy∣∣∣∣∣ ω1 ω2

a(ω1) a(ω2)

∣∣∣∣∣ ∈ 2πiZ. (6.3.4.3)

See ([Mu AV], I.2) for general formulas for a(u), b(u).

(6.3.5) The simplest line bundle on C/L. Assume that ω2 = 1, ω1 = τ (Im(τ) > 0). After a
reparametrization (6.3.1.3) with β(z) = exp(Az2 +Bz + C) (for suitable A,B,C ∈ C), we can assume that
a(1) = b(1) = 0. The integrality condition (6.3.4.3) then becomes

−a(τ) =

∣∣∣∣∣ τ 1

a(τ) 0

∣∣∣∣∣ ∈ 2πiZ.

Consider the simplest non-trivial value −a(τ) = 2πi. The sections of the associated line bundle L then
correspond to holomorphic functions F ∈ O(C) satisfying

F (z + 1) = F (z)

F (z + τ) = e−2πiz+b(τ)F (z).

Is there a “simplest” choice of the parameter b(τ)? After a change of variables by the translation

Tc : z 7→ z + c

(which amounts to replacing L by its pull-back T ∗c L ), the constant b(τ) is replaced by b(τ) − 2πic. It is
natural to choose c for which F (z) = F (−z) would be an even holomorphic section; putting z = −τ/2 we
obtain b(τ) = −πiτ .

We denote by L (until the end of Sect. 6) the line bundle on C/Zτ + Z corresponding to the values

a(1) = b(1) = 0, a(τ) = −2πi, b(τ) = −πiτ.

A section s ∈ Γ(C/Zτ + Z, L ) is then given by F (z) ∈ O(C) satisfying

F (z + 1) = F (z)

F (z + τ) = e−2πi(z+ τ
2 )F (z).

(6.3.5.1)

(6.3.6) Proposition (Basic theta function). The space of holomorphic solutions of (6.3.5.1) is equal to
C · θ(z), where

θ(z) = θ(z; τ) =
∑
n∈Z

qn
2/2tn =

∑
n∈Z

eπin
2τ+2πinz.
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In other words, Γ(C/Zτ + Z, L ) = C · θ(z).

Proof. Assume that F ∈ O(C) satisfies (6.3.5.1). The first relation implies that F (z) = f(e2πiz) for some
f ∈ O(C∗) which can be expanded to a convergent Laurent series

f(t) =
∑
n∈Z

ant
n (t = e2πiz).

The second relation is equivalent to∑
n∈Z

anq
ntn = f(qt) = t−1q−1/2f(t) =

∑
n∈Z

anq
−1/2tn−1 =

∑
n∈Z

an+1q
−1/2tn

(where q1/2 = eπiτ ), hence to

an+1 = qn+1/2an (n ∈ Z) ⇐⇒ an = qn
2/2a0 (n ∈ Z) ⇐⇒ f(t) = a0

∑
n∈Z

qn
2/2tn = a0 θ(z).

As |q| < 1, the series defining θ(z) is uniformly convergent for t contained in a compact subset of C∗, and
so defines a holomorphic function. Reversing the calculation, we see that θ(z) satisfies (6.3.5.1).
(6.3.7) Further theta functions. For fixed a, b ∈ {0, 1} = Z/2Z, denote by χa,b : L −→ L/2L −→ {±1}
(where L = Zτ + Z) the character

χa,b(m+ nτ) = (−1)ma+nb (m,n ∈ Z).

By 6.2.7, the constant functions {χa,b(u)} define a line bundle on C/Zτ + Z, which will also be denoted
by χa,b. For each m ∈ Z, a section s ∈ Γ(C/Zτ + Z, L ⊗m ⊗ χa,b) corresponds to a holomorphic function
F ∈ O(C) satisfying

F (z + 1) = (−1)aF (z)

F (z + τ) = (−1)be−2πim(z+ τ
2 )F (z).

(6.3.7.1)

We first consider the case m = 1.

(6.3.8) Proposition. For m = 1 and a, b ∈ {0, 1}, the space of holomorphic solutions of (6.3.7.1) is equal
to C · θab(z), where

θab(z) = θab(z; τ) =
∑
n∈Z

eπi(n+ a
2 )2τ+2πi(n+ a

2 )(z+ b
2 ) = θa0(z +

b

2
; τ) = eπia(z+ b

2 )+πiaτ
4 θ00(z +

aτ + b

2
; τ).

In other words, Γ(C/Zτ + Z, L ⊗ χa,b) = C · θab(z). (Of course, θ00(z) = θ(z).)

Proof. As in 6.3.6.
(6.3.9) Warning about normalizations. Our definition of θab(z) is the same as in [MK] and [Mu TH]
(except that Mumford uses a/2, b/2 instead of a, b), but the “classical” θ11(z) used in [Web] is equal to our
−θ11(z).
(6.3.10) Degenerate values. If we let Im(τ) tend to +∞ (“τ −→ i∞”), then q = exp(2πiτ) tends to 0.
The expansions of θab(z; τ) then yield the following asymptotics as τ −→ i∞:

θ00(z; τ) ∼ θ01(z; τ) ∼ 1, θ10(z; τ) ∼ (t1/2 + t−1/2) q1/8, θ11(z; τ) ∼ i(t1/2 − t−1/2) q1/8.

(6.3.11) Relation to A(z). The function A(z) from (5.3.4.1) is also a theta function. A short calculation
shows that
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B(z) = A(z +
τ + 1

2
)

satisfies (6.3.5.1), hence

θ(z; τ) = c(τ)A(z +
τ + 1

2
) (6.3.11.1)

for some c(τ) ∈ C∗, by 6.3.6.

(6.3.12) Proposition. (i) The function θ(z) has simple zeros at z ∈ τ+1
2 + Zτ + Z (and no other zeros).

(ii) For a, b ∈ {0, 1}, the function θab(z) has simple zeros at z ∈ (a+1)τ+(b+1)
2 + Zτ + Z (and no other zeros).

Proof. For (i), combine 5.3.4 and (6.3.11.1); (ii) then follows from the formulas relating θab(z) and θ(z).

(6.3.13) Exercise. Using only the functional equation (6.3.5.1) of θ(z), show that

1
2πi

∫
∂D

θ′(z)
θ(z)

dz = 1,
1

2πi

∫
∂D

z
θ′(z)
θ(z)

dz ∈ τ + 1
2

+ Zτ + Z,

where the integral is taken over the boundary of a fundamental parallelogram D = {z = α+ t1τ + t21 | 0 ≤
t1, t2 ≤ 1} for the action of Zτ + Z on C. [This calculation gives another proof of 6.3.12(i).]

(6.3.14) General line bundles on C/L. Is it possible to classify all line bundles (up to isomorphism) on
C/Zτ+Z? The discussion in 6.3.5 implies that each line bundle L ′ is defined, after a suitable reparametriza-
tion, by the functions

α1(z) = 1, ατ (z) = e−2πim(z+ τ
2 +c) (m ∈ Z, c ∈ C), (6.3.14.1)

with αu(z) for general u ∈ Zτ + Z defined by the associativity relation (6.3.1.1). In other words, L ′ is
isomorphic to (T ∗c L )⊗m, where Tc(z) = z+c is the translation by c ∈ C (for example, Γ(C/Zτ+Z, T ∗c L ) =
C · θ(z + c)).
(6.3.15) Line bundles and divisors. If c, d ∈ C satisfy m(c− d) ∈ Zτ + Z, then the functions (6.3.14.1)
differ by a reparametrization (6.3.1.3) (exercise!). This means that the isomorphism class of (T ∗c L )⊗m

depends on two invariants: an integer and an element of C/Zτ + Z, which is strongly reminiscent of the
description of the divisor class group given in 5.3.6:

0 −→ C/Zτ + Z −→ Cl(C/Zτ + Z)
deg−−→Z −→ 0.

This is no accident; in fact, there is a direct correspondence between (isomorphism classes of) line bundles
on an arbitrary Riemann surface X and divisor classes on X, given as follows. First of all, one can define
meromorphic sections of a line bundle L over X. For example, in the situation of 6.3.3(2), such a section
corresponds to a meromorphic function F (y) satisfying 6.2.9.2. The zeros and poles (including multiplicities)
of such a (non-zero) meromorphic section s are invariant under the action of G, hence come from a divisor
div(s) ∈ Div(X). Non-zero meromorphic sections of L always exist, and form a one-dimensional vector
space over M(X) (by the same argument as in 3.3.16). If s′ = fs is another meromorphic section of L
(with f ∈M(X)−{0}), then div(s′) = div(s) + div(f); thus the class of the divisor div(s) does not depend
on the choice of s. Associating to L the class of div(s) then defines a homomorphism of abelian groups

{isomorphism classes of line bundles on X} −→ Cl(X), (6.3.15.1)

with tensor product as the group operation on the left hand side. In fact, (6.3.15.1) is always an isomorphism
(both sides being trivial if X is not compact). With an appropriate notion of a divisor, all of the above holds
for (smooth) complex varieties of any dimension embeddable into PN (C); see [Gr-Ha], 1.2.
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6.4 Relations between theta functions

Theta functions satisfy a large number of interesting identities (see [Web], [Mu TH], [McK-Mo]); a few of
them will be proved in this section (following closely [Web]).

(6.4.1) The basic principle is very simple: in general, the tensor products

Γ(C/Zτ + Z, L ⊗m ⊗ χa,b)⊗C Γ(C/Zτ + Z, L ⊗n ⊗ χc,d) −→ Γ(C/Zτ + Z, L ⊗m+n ⊗ χa+c,b+d)

have non-trivial kernels, which yield non-trivial linear relations between products of theta functions. The
existence of such relations can be often established by a simple count of dimensions.

(6.4.2) Exercise. The four functions θab(z) are linearly independent over C. [Hint: The characters of
L/2L are linearly independent.]

(6.4.3) Proposition. For m ∈ Z and a, b ∈ {0, 1},

dimC Γ(C/Zτ + Z, L ⊗m ⊗ χa,b) =

{
m, if m > 0

0, if m < 0.

Proof. (Sketch) If m > 0, expand a holomorphic solution of (6.3.7.1) into a Laurent series
∑
n∈Z ant

n+a/2;
the functional equation yields recursive relations between an and an+m (n ∈ Z), which leaves the values
of a0, . . . , am−1 undetermined. Conversely, any choice of these first m coefficients defines a holomorphic
solution. If m < 0, we obtain again recursive relations between an and an+m, but every non-zero choice of
(a0, . . . , am−1) leads to a divergent series (alternatively, one can also appeal to 6.2.16)).

(6.4.4) Examples: (1) The four functions θ2
ab(z) all lie in the two-dimensional space Γ(C/Zτ + Z, L ⊗2).

In fact, it follows from 6.4.2 that they generate this space. As a result, there exist two linearly independent
linear relations between θ2

00(z), θ2
01(z), θ2

10(z), θ2
11(z).

(2) The four functions θab(2z) all lie in the four-dimensional space Γ(C/Zτ + Z, L ⊗4); by 6.4.2 they form
its basis. By 6.3.12, these functions have no common zeros, hence the map

f : C/Zτ + Z −→ P3(C), z 7→ (θ00(2z) : θ01(2z) : θ10(2z) : θ11(2z))

is well-defined. By (1), the image of f is contained in the intersection of two quadricsQ1(C)∩Q2(C) ⊂ P3(C),
where

Q1 : a0X
2
0 + a1X

2
1 + a2X

2
2 + a3X

2
3 = 0, Q2 : b0X2

0 + b1X
2
1 + b2X

2
2 + b3X

2
3 = 0.

(6.4.5) Exercise. (i) Write down explicitly two relations from 6.4.4(1).
(ii) For a, b, c, d ∈ {0, 1}, express the values θab( cτ+d

2 ) in terms of θ(a+c)(b+d).
(iii) Deduce that θ4

00 = θ4
01 + θ4

10.
(iv) Show that f : C/Zτ + Z −→ Q1(C) ∩Q2(C) is a bijection ([McK-Mo], 3.4).

(6.4.6) Notation. For n ≥ 0 and a, b ∈ {0, 1}, we shall denote

θ
(n)
ab (z) =

(
∂

∂z

)n
θab(z), θab = θab(0; τ), θ

(n)
ab =

(
∂

∂z

)n
θab(z; τ)

∣∣∣∣
z=0

.

(6.4.7) Exercise. Show that

θab(−z) = θab(z) ·

{
1, if ab = 00, 01, 10

−1, if ab = 11.
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(6.4.8) Exercise. Show that, for a, b, c, d ∈ {0, 1},∣∣∣∣∣ θ
′
ab(z) θ′cd(z)

θab(z) θcd(z)

∣∣∣∣∣ ∈ Γ(C/Zτ + Z, L ⊗2 ⊗ χa+c,b+d).

(6.4.9) Corollary. We have ∣∣∣∣∣ θ
′
11(z) θ′01(z)

θ11(z) θ01(z)

∣∣∣∣∣ =
θ′11θ01

θ00θ10
θ00(z) θ10(z).

Proof. The function f(z) (resp. g(z)) on the left (resp. right) hand side is even (by 6.4.7) and lies in

Γ(C/Zτ + Z, L ⊗2 ⊗ χ1,0) = C · θ00(z) θ10(z)⊕C · θ11(z) θ01(z).

As the function θ11(z) θ01(z) is odd, we must have f(z) = λg(z) for some λ = λ(τ) ∈ C∗; the exact value of
λ is obtained by putting z = 0 (and using θ11 = 0).

(6.4.10) Proposition. There exists c ∈ C∗ such that

θ′11 = c θ00 θ01 θ10.

Proof. Applying (∂/∂z)2 to the identity in 6.4.9 and putting z = 0, we obtain

θ′′′11 θ01 − θ′′01 θ
′
11 =

θ′11θ01

θ00θ10
(θ′′10 θ00 + θ′′00 θ10),

hence

θ′′′11

θ′11

=
θ′′01

θ01
+
θ′′10

θ10
+
θ′′00

θ00
.

Using Lemma 6.4.11 below, this can be rewritten as

∂

∂τ
log(θ′11) =

∂

∂τ
log(θ01 θ10 θ00),

proving the claim.

(6.4.11) Lemma (Heat equation). For a, b ∈ {0, 1},

(D2
z − 4πiDτ ) θab(z; τ) = 0

(where Dz = ∂/∂z, Dτ = ∂/∂τ).

Proof. As

1
2πi

Dτ :

{
qm 7→ mqm

tm 7→ 0

}
,

1
2πi

Dz :

{
qm 7→ 0
tm 7→ mtm

}
,

the operator 1/2πiDτ − 1
2 (1/2πiDz)2 annihilates each term of the series

θab(z; τ) =
∑
n∈Z

eπib(n+ a
2 )q(n+ a

2 )2/2tn+ a
2 .

(6.4.12) We are now ready to evaluate the factor c(τ) in (6.3.11.1):

θ00(z; τ) = c(τ)
∞∏
n=1

(1 + qn−1/2t)(1 + qn−1/2t−1) (t = e2πiz, qα = e2πiατ ).
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It follows from 6.3.8 that

θ01(z; τ) = c(τ)
∞∏
n=1

(1− qn−1/2t)(1− qn−1/2t−1)

θ10(z; τ) = (t1/2 + t−1/2) q1/8c(τ)
∞∏
n=1

(1 + qnt)(1 + qnt−1)

θ11(z; τ) = i(t1/2 − t−1/2) q1/8c(τ)
∞∏
n=1

(1− qnt)(1− qnt−1).

(6.4.12.1)

Letting z 7→ 0 (when t ∼ 1 + 2πiz), we obtain

θ00 = c(τ)
∞∏
n=1

(1 + qn−1/2)2

θ01 = c(τ)
∞∏
n=1

(1− qn−1/2)2

θ10 = 2 c(τ) q1/8
∞∏
n=1

(1 + qn)2

θ′11 = −2π c(τ) q1/8
∞∏
n=1

(1− qn)2.

(6.4.12.2)

The identity θ′11 = c θ00 θ01 θ10 from 6.4.10 implies that

−2π c(τ) q1/8
∞∏
n=1

(1− qn)2 = c · 2 c(τ)3 q1/8
∞∏
n=1

(1− q2n−1)2(1− q2n)2

(1− qn)2
= c · 2 c(τ)3 q1/8,

hence

c(τ)2 = (−π/c)
∞∏
n=1

(1− qn)2.

Letting Im(τ) −→∞ (when q −→ 0) and using 6.3.10, we see that c(τ) −→ 1. This implies that

c = −π, c(τ) =
∞∏
n=1

(1− qn). (6.4.12.3)

We have thus proved

(6.4.13) Proposition. θ′11 = −π θ00 θ01 θ10 (cf. 6.3.9).

(6.4.14) Theorem (Jacobi’s Triple Product Formula).

∑
n∈Z

qn
2/2tn =

∞∏
n=1

(1− qn)(1 + qn−1/2t)(1 + qn−1/2t−1).

(6.4.15) Exercise (Another proof of Jacobi’s Triple Product Formula). Substituting to the product
formula (6.3.11.1) the values τ = 1

2 ,
1
4 and using the fact that θ(4z, 1

2 ) = θ(z, 1
4 ), deduce that the holomorphic

function c(τ)/
∏
n≥1(1− qn) (Im(τ) > 0) is invariant under τ 7→ 4τ and τ 7→ τ + 2, hence constant.

(6.4.16) Proposition.

∞∏
n=1

(1− qn)3 =
∞∑
n=0

(−1)n(2n+ 1) qn(n+1)/2 = 1− 3q + 5q3 − 7q6 + 9q10 − 11q15 + · · ·
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Proof. This follows from the expansion

θ′11 = −2π q1/8
∑
n∈Z

(n+ 1/2)(−1)nqn(n+1)/2 = −2π q1/8
∞∑
n=0

(−1)n(2n+ 1) qn(n+1)/2

and the product formula

θ′11 = −2π q1/8
∞∏
n=1

(1− qn)3,

which is obtained by combining (6.4.12.2-3).

7. Construction of elliptic functions (Weierstrass’ method)

7.1 The Weierstrass σ, ζ and ℘-functions

Let L ⊂ C be a lattice.

(7.1.1) Recall that Jacobi’s method of construction of elliptic functions with respect to L consisted in
taking a quotient

θ1(z)
θ2(z)

of two theta functions, i.e. of two solutions of (6.1.1.1). By contrast, Weierstrass showed that the function
U(z) from 4.4.3 (i.e. the inverse of the Abel-Jacobi map) can be written directly as(

∂

∂z

)2

log σ(z),

where σ(z) is a particular theta function with simple zeros at z ∈ L. Morally,

“σ(z) =
∏
u∈L

(z − u)”, (7.1.1.1)

but this infinite product does not converge for any z ∈ C.
An elementary version of σ(z) is the function sin(z), which is holomorphic in C and has simple zeros at

z ∈ πZ. The infinite product

g(z) = z
∞∏
n=1

(
1− z

πn

)(
1 +

z

πn

)
= z

∞∏
n=1

(
1− z2

π2n2

)
(7.1.1.2)

has the same properties, as the series

∞∑
n=1

|z2|
π2n2

is uniformly convergent on compact subsets of C ([Ru 2], Thm. 15.6). In fact,

g(z) = sin(z).

(7.1.2) Exercise–Definition. For s ∈ R,

∑
u∈L

′ 1
|u|s

<∞ ⇐⇒ s > 2, (7.1.2.1)
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where we have used the notation ∑
u∈L

′
=

∑
u∈L−{0}

In particular, the series

G2k(L) =
∑
u∈L

′ 1
u2k

(7.1.2.2)

is absolutely convergent for every integer k ≥ 2.

(7.1.3) Definition of the σ-function. The divergence of the sum (7.1.2.1) for s = 1, 2 implies that one
cannot work directly with the products

∏
u∈L

′ (
1− z

u

)
,

∏
u∈Σ

(
1− z2

u2

)
,

where L− {0} = Σ ∪ −Σ, Σ ∩ −Σ = ∅. However, the power series expansion

− log
(

1− z

u

)
=
z

u
+

1
2

( z
u

)2

+
1
3

( z
u

)3

+ · · · (|z| < |u|)

implies (together with 7.1.2) that the infinite product

σ(z) = σ(z;L) = z
∏
u∈L

′ (
1− z

u

)
e
z
u+ 1

2 ( zu )2

(7.1.3.1)

is uniformly convergent on compact subsets of C and defines a holomorphic function with simple zeros at
z ∈ L and no other zeros ([Ru 2], Thm. 15.6).

As we shall see in 7.4.9 below,

σ(z; Zτ + Z) = c1e
c2z

2
θ11(z; τ), (7.1.3.2)

for suitable constants ci = ci(τ) ∈ C.
(7.1.4) Definition of the ζ- and ℘-functions. The convergence properties of the infinite product (7.1.3.1)
imply that its logarithmic derivative ζ(z;L) can be computed term by term:

ζ(z;L) =
σ′(z)
σ(z)

=
1
z

+
∑
u∈L

′
(

1
z − u

+
1
u

+
z

u2

)
, (7.1.4.1)

where the infinite series is uniformly convergent on compact subsets of C− L to a holomorphic function; it
is meromorphic on C, with simple poles at all z ∈ L.

The power series expansion

1
z − u

+
1
u

+
z

u2
= −

∞∑
n=2

zn

un+1
(|z| < |u|)

and the absolute convergence of the double sum

∑
u∈L

′ ∞∑
n=2

zn

un+1

imply that

ζ(z;L) =
1
z
−
∞∑
k=1

G2k+2z
2k+1. (7.1.4.2)

Differentiating (7.1.4.1) and using (7.1.4.2), we obtain the function
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℘(z;L) = −ζ ′(z;L) =
1
z2

+
∑
u∈L

′
(

1
(z − u)2

− 1
u2

)
=

1
z2

+
∞∑
k=1

(2k + 1)G2k+2z
2k (7.1.4.3)

and its derivative

℘′(z;L) = −2
∑
u∈L

(
1

(z − u)3

)
= − 2

z3
+
∞∑
k=1

(2k + 1)2k G2k+2z
2k−1. (7.1.4.4)

The function ℘(z) (resp. ℘′(z)) is an even (resp. odd) meromorphic function on C, holomorphic on C− L
and having poles of order 2 (resp. 3) at z ∈ L.

(7.1.5) Proposition. Both ℘(z) and ℘′(z) are elliptic functions with respect to L, i.e. ℘(z), ℘′(z) ∈
M(C/L).

Proof. By 7.1.2 (for s = 3), the infinite series (7.1.4.4) for ℘′(z) is absolutely convergent for all z ∈ C − L.
It follows that, for every v ∈ L and z ∈ C− L,

℘′(z + v) = −2
∑
u∈L

(
1

(z + v − u)3

)
= −2

∑
w=u−v

(
1

(z − w)3

)
= ℘′(z),

hence

℘(z + v)− ℘(z) = c(v) ∈ C.

Choosing a basis L = Zω1 + Zω2 of L and putting v = ωj , z = −ωj/2, we obtain

c(ωj) = ℘
(ωj

2

)
− ℘

(
−ωj

2

)
= 0,

as ℘ is an even function. Thus both ℘ and ℘′ are L-periodic.
(7.1.6) Rescaling L. It follows from the definitions that, for every λ ∈ C∗,

σ(λz;λL) = λσ(z;L), ζ(λz;λL) = λ−1ζ(z;L),(
d

dz

)n
℘(λz;λL) = λ−2−n

(
d

dz

)n
℘(z;L), G2k(λL) = λ−2kG2k(L).

(7.1.7) Laurent expansions at z = 0. The expansions (7.1.4.3-4) imply that

℘(z) =
1
z2

+ 3G4z
2 + 5G6z

4 + · · ·

−℘′(z) =
2
z3
− 6G4z − 20G6z

3 + · · ·

℘(z)2 =
1
z4

+ 6G4 + 10G6z
2 + · · ·

℘′(z)2 =
4
z6
− 24G4

z2
− 80G6 + · · ·

℘(z)3 =
1
z6

+
9G4

z2
+ 15G6 + · · ·

(where we write G2k for G2k(L)). It follows that the elliptic function

f(z) = ℘′(z)2 − (4℘(z)3 − 60G4℘(z)− 140G6) ∈M(C/L)

is holomorphic on C/L− {0} and has Laurent expansion of the form

f(z) = c2z
2 + c4z

4 + · · ·
at z = 0; thus f ∈ O(C/L) = C is constant, equal to f(z) = f(0) = 0. We have proved, therefore, the
following result.
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(7.1.8) Theorem. The function ℘(z) satisfies the differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3,

where

g2 = 60G4(L) = 60
∑
u∈L

′ 1
u4
, g3 = 140G6(L) = 140

∑
u∈L

′ 1
u6
.

(7.1.9) Proposition. Fix a basis L = Zω1 + Zω2 of L and put ω3 = ω1 + ω2. Then
(i) div(℘(z)− ℘(ωj/2)) = 2(ωj/2)− 2(0).
(ii) div(℘′(z)) = (ω1/2) + (ω2/2) + (ω3/2)− 3(0).
(iii) The cubic polynomial 4X3 − g2X − g3 = 4(X − e1)(X − e2)(X − e3) has three distinct roots satisfying
{e1, e2, e3} = {℘(ω1/2), ℘(ω2/2), ℘(ω3/2)}.

Proof. For each j = 1, 2, 3,

−℘′(ωj/2) = ℘′(−ωj/2) = ℘′(−ωj/2 + ωj) = ℘′(ωj/2) =⇒ ℘′(ωj/2) = 0.

It follows that the function ℘′(z) (resp. ℘(z)− ℘(ωj/2)) has a zero of order ≥ 1 (resp. ≥ 2) at ωj/2 ∈ C/L;
as its only pole is at z = 0 and has order 3 (resp. 2), the statements (i), (ii) follow from the fact that
the degree of a principal divisor is equal to zero. The differential equation 7.1.8 implies that each number
aj = ℘(ωj/2) is a root of 4X3 − g2X − g3; these numbers are distinct, since the divisors div(℘(z)− aj) are
distinct, proving (iii).
(7.1.10) The discriminant and the j-invariant. Writing

4X3 − g2X − g3 = 4(X3 + aX + b) = 4(X − e1)(X − e2)(X − e3)

with a = −g2/4, b = −g3/4, it follows from 7.1.9(iii) that the discriminant

disc(X3 + aX + b) =
∏
i<j

(ei − ej)2 = −4a3 − 27b2 6= 0

is non-zero. It is customary to get rid of the denominators and define the discriminant of L as

∆(L) = 16
∏
i<j

(ei − ej)2 = 16
(
−4(−g2/4)3 − 27(−g3/4)2

)
= g3

2 − 27g2
3 6= 0 (7.1.10.1)

and the j-invariant of L as

j(L) =
(12g2)3

∆(L)
=

1728g3
2

∆(L)
. (7.1.10.2)

Under rescaling,

∆(λL) = λ−12∆(L), j(λL) = j(L) (λ ∈ C∗).

(7.1.11) Exercise. What are the analogues of 7.1.4-10 if we replace σ(z) by sin(z)?

7.2 The elliptic curve E associated to C/L

(7.2.1) It follows from 7.1.9(iii) that the projective curve

E : Y 2Z = 4X3 − g2XZ
2 − g3Z

3 = 4(X − e1Z)(X − e2Z)(X − e3Z)

is of the type considered in 4.1.1 (apart from the harmless factor of 4). Using the affine coordinates x =
X/Z, y = Y/Z on
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E − {O} : y2 = 4x3 − g2x− g3

(where O = (0 : 1 : 0) is the unique point at infinity of E), we define a map

ϕ : C/L −→ E(C), (z 6= 0) 7→ (x, y) = (℘(z), ℘′(z)), 0 7→ O.

(7.2.2) Theorem. The lattice of periods of the holomorphic differential ω = dx/y on E(C) is equal to L
and the map ϕ is a holomorphic isomorphism, inverse to the Abel-Jacobi map

α : E(C) −→ C/L, α(P ) =
∫ P

O

ω (modL).

Proof. The map ϕ is holomorphic on C − {0}; as z (resp. x/y) is a local coordinate at z = 0 (resp. at O)
on C/L (resp. on E(C)) and (

x

y
◦ ϕ
)

(z) =
℘(z)
℘′(z)

= −z
2

+ · · ·

is holomorphic at z = 0, it follows that ϕ is holomorphic everywhere. The composition of ϕ with the
projection p from 4.1.2 is given by

C/L
ϕ−−→E(C)

p−−→P1(C), z 7→ ℘(z).

The only singularity of ℘(z) is a double pole at z = 0 ∈ C/L; thus deg(p ◦ϕ) = 2, by 3.2.3.7. It follows that
deg(ϕ) = deg(p ◦ ϕ)/deg(p) = 2/2 = 1, hence ϕ is a holomorphic isomorphism (by 3.2.3). As x ◦ ϕ = ℘(z)
and y ◦ ϕ = ℘′(z), we have

ϕ∗(ω) = ϕ∗(
dx

y
) =

d℘(z)
℘′(z)

= dz

and ∫
γ

dz =
∫
ϕ◦γ

ω, (7.2.2.1)

for any path γ in C/L. Letting γ in (7.2.2.1) run through a set of representatives of H1(C/L,Z) proves the
equality of the period lattices; taking for γ the projection of any path from 0 to z in C shows that

z =
∫ z

0

dz =
∫ ϕ(z)

ϕ(0)=O

ω (modL) = α(ϕ(z)).

(7.2.3) Theorem. The field of meromorphic functions on C/L is equal toM(C/L) = C(℘(z), ℘′(z)) (i.e. ϕ
induces an isomorphism between the field of rational functions C(x, y) = Frac(C[x, y]/(y2−(4x3−g2x−g3)))
on E and M(C/L)).

Proof. Any elliptic function f ∈M(C/L) is of the form f = f+ + f−, where f±(z) = (f(z)± f(−z))/2. As
both f+(z) and f−(z)/℘′(z) are even functions, we can assume that f = f+ is even (and non-zero). We are
going to show that, in this case, f ∈ C(℘(z)). As the divisor of f is invariant under the map z 7→ −z on
C/L, it follows that

div(f) =
∑
k

nk ((ak) + (−ak)− 2(0)) +
3∑
j=1

mj

((ωj
2

)
− (0)

)
,

where nk,mj ∈ Z and ak 6= −ak ∈ C/L. By 5.2.1, we have

3∑
j=1

mj
ωj
2
∈ L =⇒ mj = m+ 2nj (m, nj ∈ Z).
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This implies that the elliptic function

g(z) = ℘′(z)m
∏
k

(℘(z)− ℘(ak))nk
3∏
j=1

(
℘(z)− ℘

(ωj
2

))nj
∈ C(℘(z), ℘′(z))

has the same divisor as f , hence f(z) = c g(z) (c ∈ C∗) also lies in C(℘(z), ℘′(z)). More precisely, m ∈ 2Z
has to be even, as f = f+, hence f ∈ C(℘(z), ℘′(z)2) = C(℘(z)).
One could have also argued directly that mj = ordωj/2f(z) is even, by substituting n = 2k− 1 and z = ωj/2
to the formula f (n)(−z) = (−1)nf (n)(z).
(7.2.4) The algebraicity statement 7.2.3 is a special case of the following general results proved by Riemann:

(A) Every compact Riemann surface X is isomorphic to C(C), for some smooth projective irreducible curve
C over C (in general, C is not a smooth plane curve).

(B) Every holomorphic map X1 = C1(C) −→ X2 = C2(C) between compact Riemann surfaces is induced
by a (unique) morphism of algebraic curves C1 −→ C2 (thus the curve C in (A) is unique up to
isomorphism).

(C) The field of meromorphic functions on X = C(C) coincides with the field of rational functions on C
(this follows from (B), if we consider a meromorphic function on X as a holomorphic map X −→ P1(C)).

The nontrivial point is the existence of a non-constant meromorphic function on X; once this is estab-
lished, the statements (A), (B), (C) follow in a relatively straightforward way.
(7.2.5) The analogous statements are false in higher dimensions. For example, if L ∼−→ Z2n is a “generic”
lattice in Cn (n ≥ 2), then the n-dimensional complex torus Cn/L is not algebraic ([Mu AV], Ch. 1).

(7.2.6) Exercise. Assume that the coefficients g2, g3 ∈ R in the equation of E are real. Show that:
(i) If ∆(L) > 0, then the roots ej are all real. Ordering them by e1 < e3 < e2, then L = Zω1 + Zω2, where

ω2

2
=
∫ ∞
e2

dx

2
√

(x− e1)(x− e2)(x− e3)
∈ R>0,

ω1

2
= i

∫ e2

e3

dx

2
√

(x− e1)(e2 − x)(x− e3)
∈ iR>0

(above, the square roots are taken to be non-negative). In particular, Re(ω1/ω2) = 0.
(ii) If ∆(L) < 0, then L = Zω1 + Zω2, where ω2 ∈ R>0 and ω1 − ω2/2 ∈ iR>0 (hence Re(ω1/ω2) = 1/2).

7.3 Relations between ℘(z) and θab(z)

In this section L = Zτ + Z, where Im(τ) > 0. We put ω1 = τ , ω2 = 1 (=⇒ ω3 = τ + 1) and ej = ℘(ωj/2).

(7.3.1) Proposition. In the notation of 6.3.8 and 6.4.6,

℘(z)− e1 = ℘(z)− ℘(τ/2) =
(
θ01(z)
θ11(z)

θ′11

θ01

)2

℘(z)− e2 = ℘(z)− ℘(1/2) =
(
θ10(z)
θ11(z)

θ′11

θ10

)2

℘(z)− e3 = ℘(z)− ℘((τ + 1)/2) =
(
θ00(z)
θ11(z)

θ′11

θ00

)2

Proof. Both functions ℘(z)−e1 and g(z) = θ2
01(z)/θ2

11(z) lie inM(C/L) and have the same divisor div(f) =
div(g) = 2(τ/2) − 2(0); thus f(z) = c g(z) for some c ∈ C∗. If z −→ 0 tends to zero, then f(z) ∼ 1/z2,
θ01(z) ∼ θ01 and θ11(z) ∼ θ′11z, hence c = (θ′11/θ01)2. The other two formulas are proved in the same way.

(7.3.2) Corollary. The function ℘′(z) is equal to

℘′(z) = −2
θ00(z)θ01(z)θ10(z)

θ11(z)3

(θ′11)3

θ00θ01θ10
(= 2π(θ′11)2 θ00(z)θ01(z)θ10(z)

θ11(z)3
).

Proof. Multiplying the three identities in 7.3.1 yields a formula for ℘′(z)2/4; the correct sign of its square
root ℘′(z)/2 is determined by the asymtotics ℘′(z) ∼ −2/z3 as z −→ 0.
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(7.3.3) Proposition. We have

e3 − e1 = ℘((τ + 1)/2)− ℘(τ/2) =
(
θ10θ

′
11

θ00θ01

)2

(= π2θ4
10)

e1 − e2 = ℘(τ/2)− ℘(1/2) =
(
θ00θ

′
11

θ01θ10

)2

(= −π2θ4
00)

e2 − e3 = ℘(1/2)− ℘((τ + 1)/2) =
(
θ01θ

′
11

θ10θ00

)2

(= π2θ4
01)

Proof. Substitute z = τ/2, 1/2, (τ + 1)/2 to 7.3.1 and use 6.4.5(ii) (resp. 6.4.13 for the values involving π2).

(7.3.4) Corollary. The functions

θ00 =
∑
n∈Z

qn
2/2, θ01 =

∑
n∈Z

(−1)nqn
2/2, θ10 = −q1/8

∑
n∈Z

qn(n+1)/2

satisfy
θ4

00 = θ4
01 + θ4

10. (7.3.4.1)

(7.3.5) Note that the proof of (7.3.4.1) sketched in 6.4.5 is much simpler; it does not use the identity 6.4.10.

(7.3.6) Proposition (Jacobi’s formula). The discriminant function ∆ from (7.1.10.1) is given by

∆(Zτ + Z) = 24

(
(θ′11)3

θ00θ01θ10

)4

= (2π)12q
∞∏
n=1

(1− qn)24 (= (2π)4(θ′11)8).

Proof. Combine (7.1.10.1) with 7.3.3 and the product formulas (6.4.12.2) (note that the exact value of the
factor c(τ) in (6.4.12.2) is irrelevant).

(7.3.7) The formulas in 7.3.1 are also useful for numerical calculations, as the infinite series defining the
theta fonctions converge very rapidly.

7.4 Properties of σ(z)

Let L ⊂ C be an arbitrary lattice.

(7.4.1) Recall that σ′(z)/σ(z) = ζ(z) and −ζ ′(z) = ℘(z) ∈ M(C/L). This implies that, for each u ∈ L,
the function

ζ(z + u;L)− ζ(z;L) = η(u;L) ∈ C (7.4.1.1)

is constant. In fact,

η(u) = η(u;L) =
∫
γ

ζ ′(z) dz = −
∫
γ

℘(z) dz,

where γ is any path in C−L whose projection to C/L is closed and has class equal to u ∈ L = H1(C/L,Z).
The value of the integral does not depend on γ, as ζ ′(z)dz = dζ(z) is the differential of a holomorphic function
on C− L and the residues resa(ζ ′(z)dz) = 0 vanish at all a ∈ L. Using the isomorphism ϕ : C/L ∼−→ E(C)
from 7.2.1, we can also write

η(u) = −
∫
γE

x dx

y
(γE = ϕ(pr(γ))),

as ϕ∗(x dx/y) = ℘(z) d℘(z)/℘′(z) = ℘(z) dz.
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(7.4.2) Proposition (Legendre’s relation). Fix a basis L = Zω1 + Zω2 of L satisfying Im(ω1/ω2) > 0
and put ηj = η(ωj ;L) (j = 1, 2). Then ∣∣∣∣∣ω1 ω2

η1 η2

∣∣∣∣∣ = 2πi.

Proof. Fix a fundamental parallelogram D = {z = α + t1ω1 + t2ω2 | 0 ≤ t1, t2 ≤ 1} for the action of L on
C containing 0 in its interior. As the only singularity of ζ(z) inside D is a simple pole at z = 0, the residue
theorem yields

2πi = 2πi res0(ζ(z) dz) =
∫
∂D

ζ(z) dz =
∫ α+ω2

α

(ζ(z)− ζ(z + ω1))︸ ︷︷ ︸
−η1

dz+

+
∫ α+ω1

α

(ζ(z + ω2)− ζ(z))︸ ︷︷ ︸
η2

dz = ω1η2 − ω2η1.

(7.4.3) Lemma. For u ∈ L, put ψ(u) = 1 (resp. = −1) if u/2 ∈ L (resp. if u/2 6∈ L). Then

σ(z + u) = ψ(u)σ(z)eη(u)(z+u
2 ). (7.4.3.1)

Proof. Integrating (7.4.1.1) we obtain (7.4.3.1) with some ψ(u) ∈ C∗. If u/2 6∈ L, evaluation at z = −u/2
yields ψ(u) = σ(−u/2)/σ(u/2) = −1. If u/2 ∈ L, we can assume u 6= 0 (the case u = 0 is trivial). As
ψ(2u) = ψ(u)2, writing u = 2nv with v ∈ L, v/2 6∈ L and n ≥ 1 gives ψ(u) = 1.
(7.4.4) Construction of elliptic functions using σ(z). The formula (7.4.3.1) implies that the con-
struction from the proof of 5.3.5 can be performed using the σ-function: if a1, . . . , an; b1, . . . , bn ∈ C (not
necessarily distinct) satisfy

∑
j aj =

∑
j bj ∈ C, then the function

f(z) =
n∏
j=1

σ(z − aj)
σ(z − bj)

lies inM(C/L) and its divisor is equal to div(f) =
∑
j((Pj)− (Qj)), where Pj (resp. Qj) is the image of aj

(resp. of bj) in C/L. Here is a simple example:

(7.4.5) Lemma. For a ∈ C− L,

℘(z)− ℘(a) = −σ(z − a)σ(z + a)
σ(z)2σ(a)2

Proof. The functions ℘(z) − ℘(a) and f(z) = σ(z − a)σ(z + a)/σ(z)2 both lie in M(C/L) − {0} and have
the same divisor div(℘(z)− ℘(a)) = (a) + (−a)− 2(0) = div(f); thus ℘(z)− ℘(a) = c f(z) for some c ∈ C∗.
If z −→ 0, then ℘(z)− ℘(a) ∼ 1/z2 and f(z) ∼ −σ(a)2/z2, hence c = −1/σ(a)2.
(7.4.6) In the special case when ω1 = τ (Im(τ) > 0) and ω2 = 1, The Legendre relation 7.4.2 becomes

η1 = τη2 − 2πi. (7.4.6.1)

(7.4.7) Lemma. The function

g(z) = e−
1
2η2z

2+πizσ(z; Zτ + Z)

satisfies
g(z + 1) = g(z)

g(z + τ) = −e−2πizg(z).

Proof. Direct calculation – combine 7.4.3 with (7.4.6.1).
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(7.4.8) Corollary. We have

g(z) = −
(

1
2πi

)
(1− t)

∞∏
n=1

(1− qnt)(1− qnt−1)
(1− qn)2

(t = e2πiz, q = e2πiτ ).

Proof. The function g(z) is holomorphic in C, has simple zeros at z ∈ Zτ + Z (and no other zeros) and
satisfies 7.4.7. Thus g(z)/A(z) (where A(z) is the function defined in 5.3.4) is a meromorphic function on
C/L without zeros, hence constant. The value of this constant is determined by the asymptotic behaviour
for z −→ 0:

g(z) ∼ z, (1− t) ∼ −2πiz, A(z)/(1− t) ∼
∞∏
n=1

(1− qn)2.

(7.4.9) Corollary. If Im(τ) > 0 and η2 = η(1; Zτ + Z), then

σ(z; Zτ + Z) = (2πi)−1eη2z
2/2(t1/2 − t−1/2)

∞∏
n=1

(1− qnt)(1− qnt−1)
(1− qn)2

=

= θ11(z; τ)(−2πi)−1q−1/8eη2z
2/2

∞∏
n=1

1
(1− qn)3

(tα = e2πiαz, qα = e2πiατ ).

Proof. This follows from 7.4.8, the definition of g(z) and the product formula (6.4.12.1) (together with the
exact value of c(τ) given by (6.4.12.3)).
(7.4.10) One can give another (?) proof of 7.3.6 using the properties of the σ-function, beginning with

ej − ek = ℘(ωj/2)− ℘(ωk/2) = −σ((ωj − ωk)/2)σ((ωj + ωk)/2)
σ(ωj/2)2σ(ωk/2)2

(by 7.4.5) and using the product formula 7.4.9 to evaluate σ(ωj/2) (for ωj = τ, 1, τ + 1).

7.5 Addition formulas for ℘(z) and the group law on E(C)

(7.5.1) The torus (C/L,+) is an abelian group with respect to addition, with neutral element 0. The
mutually inverse bijections

ϕ : C/L −→ E(C)
z 7→ (℘(z), ℘′(z))
0 7→ O

α : E(C) −→ C/L

P 7→
∫ P

O

dx

y
(modL)

ϕ∗(dx/y) = dz

α∗(dz) = dx/y

from 4.4.2 (resp. 7.2.2) transport this abelian group structure to E(C). The corresponding addition � on
E(C) has neutral element O and satisfies

(℘(z1), ℘′(z1))� (℘(z2), ℘′(z2)) = (℘(z1 + z2), ℘′(z1 + z2)).

(7.5.2) Characterization of “+” on C/L. The addition on C/L admits an abstract characterization in
terms of the isomorphism

� : Cl0(C/L) ∼−→ C/L

from 5.3.6. In concrete terms, if aj , bj ∈ C (j = 1, . . . , N) are complex numbers (not necessarily distinct)
and Pj = pr(aj), Qj = pr(bj) their projections (under pr : C −→ C/L) to the torus, then the following
statements are equivalent:
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P1 + · · ·+ PN = Q1 + · · ·+QN ∈ C/L

(∃f ∈M(C/L)∗)
N∑
j=1

((Pj)− (Qj)) = div(f)

a1 + · · ·+ aN ≡ b1 + · · ·+ bN (modL)
N∑
j=1

∫ aj

0

dz ≡
N∑
j=1

∫ bj

0

dz (modL).

(7.5.2.1)

(7.5.3) Characterization of “�” on E(C). Application of the bijections ϕ, α from 7.5.1 to 5.3.6 yields
an isomorphism of abelian groups

� : Cl0(E(C)) ∼−→ E(C)∑
nj(Pj) 7→ �[nj ]Pj ,

where [n]P (for n ∈ Z) is defined as in 0.5.0. Furthermore, if Pj , Qj ∈ E(C) (j = 1, . . . , N) are points (not
necessarily distinct) on E, then (7.5.2.1) translates into the following equivalent statements:

P1 � · · ·� PN = Q1 � · · ·�QN ∈ E(C)

(∃f ∈M(E(C))∗)
N∑
j=1

((Pj)− (Qj)) = div(f)

N∑
j=1

∫ Pj

O

dx

y
≡

N∑
j=1

∫ Qj

O

dx

y
(modL).

(7.5.3.1)

(7.5.4) Example: Abel’s Theorem revisited. Let F (X,Y, Z) ∈ C[X,Y, Z] be a homogeneous polyno-
mial of degree d = deg(F ) ≥ 1 and C : F = 0 the corresponding projective plane curve C ⊂ P2.

Assume that the intersection E(C) ∩ C(C) is finite; then the intersection divisor E(C) ∩ C(C) =
(P1) + · · ·+ (P3d) has degree 3d, by Bézout’s Theorem (the points Pj are not necessarily distinct).

P =P

P

P
4

5

3

6

=P2P
1

E

C

As

f =
F (X,Y, Z)

Zd
∈M(E(C))∗, div(f) =

3d∑
j=1

(Pj)− 3d(O),

it follows from (7.5.3.1) that
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P1 � · · ·� P3d = [3d]O = O (7.5.4.1)

on E(C). Equivalently,

3d∑
j=1

∫ Pj

O

dx

y
≡ 0 (modL),

which is a special case of Abel’s theorem.

(7.5.5) Example (continued). If d = 1, i.e. if F = a0X + a1Y + a2Z is linear (and non-zero), then
C : F = 0 is a line in P 2 and the intersection divisor E(C) ∩ C(C) = (P1) + (P2) + (P3) consists of three
points (not necessarily distinct).

P

P

P1
2

3

The divisor of f = F/Z = a0x+a1y+a2 ∈M(E(C))∗ is equal to div(f) = (P1) + (P2) + (P3)− 3(O), hence

P1 � P2 � P3 = [3]O = O (7.5.5.1)

and

∫ P1

O

dx

y
+
∫ P2

O

dx

y
+
∫ P3

O

dx

y
≡ 0 (modL),

which was already proved in 2.3.3.
Each “vertical” line C ′ : X + cZ = 0 (c ∈ C) contains the point O; thus the intersection divisor

E(C) ∩ C ′(C) is equal to (O) + (P ) + (P ′). If P = (x, y) 6= O, then necessarily P ′ = (x,−y). As
O � P � P ′ = O, it follows that

(x,−y) = P ′ = [−1]P = [−1](x, y) (7.5.5.2)

is the inverse of P with respect to the group law.
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P

[−1]

O

P

Equivalently, one can argue that

P = (℘(z), ℘′(z))

for some z ∈ C− L, hence

[−1]P = (℘(−z), ℘′(−z)) = (℘(z),−℘′(z)).

(7.5.6) Geometric description of the group law �. Given two distinct (resp. equal) points P,Q ∈ E(C)
on E, let C = PQ ⊂ P2 be the unique line passing through them (resp. the tangent line to E containing
P = Q). The intersection divisor E(C) ∩C(C) is then equal to (P ) + (Q) + (R), for a uniquely determined
point R ∈ E(C). We denote this third intersection point by

P ∗Q := R. (7.5.6.1)

The discussion in 7.5.5 implies that

P ∗Q = [−1](P �Q), O ∗R = [−1]R,

hence

P �Q = O ∗ (P ∗Q), (7.5.6.2)

which gives a very simple geometric characterization of the group law �.

Q
P*Q

O

P+Q

P
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It is tempting to take (7.5.6.2) as a definition of �. However, this presents several problems: firstly, the
verification of the associative law

(P �Q)�R ?= P � (Q�R)

becomes rather non-trivial (see 10.2.6 below for more details). Secondly, the “linear” nature of (7.5.6.2)
conceals the more general “non-linear” identity (7.5.4.1). We have avoided both problems by taking the
isomorphism

Cl0(E(C)) ∼−→ E(C)

as a starting point.

(7.5.7) Formulas for �. On the other hand, (7.5.6.2) gives an explicit formula for P1 �P2. For example,
if we assume that none of the three intersection points Pj = (xj , yj) from 7.5.5 is equal to O, then we can
work with the affine line C ∩ {Z 6= 0}, given by the equation y = ax+ b. Solving the system of equations

y = ax+ b, y2 = 4x3 − g2x− g3,

we obtain the polynomial identity

4x3 − g2x− g3 − (ax+ b)2 = 4(x− x1)(x− x2)(x− x3).

Comparing the coefficients at x2 yields

x1 + x2 + x3 =
a2

4
=

1
4

(
y2 − y1

x2 − x1

)2

(assuming that P1 6= P2), hence

x3 =
1
4

(
y2 − y1

x2 − x1

)2

− x1 − x2. (7.5.7.1)

The y-coordinate of P3 is equal to

y3 = ax3 + b, b = y1 − ax1 = y1 − x1

(
y2 − y1

x2 − x1

)
. (7.5.7.2)

To sum up, if P1 6= P2, then (7.5.7.1-2) give explicit formulas for the coordinates of

(x1, y1)� (x2, y2) = [−1](x3, y3) = (x3,−y3)

as rational functions in x1, x2, y1, y2 (with coefficients in Q).
If P1 = P2, then the line y = ax+ b is tangent to E at P1. Differentiating the equation

y2 = 4x3 − g2x− g3

yields

2y dy = (12x2 − g2) dx =⇒ dy

dx
=

1
y

(
6x2 − g2

2

)
,

hence

a =
1
y1

(
6x2

1 −
g2

2

)
and
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x3 =
(6x2

1 − g2/2)2

4y2
1

− 2x1 =
(3x2

1 − g2/4)2 − 2x1(4x3
1 − g2x1 − g3)

y2
1

=
x4

1 + g2
2 x

2
1 + 2g3x1 + g2

2
16

4x3
1 − g2x1 − g3

. (7.5.7.3)

(7.5.8) Addition formulas for ℘(z). The formulas (7.5.7.1-3) can be rewritten in terms of the bijection
ϕ : C/L ∼−→ E(C). Writing

Pj = (xj , yj) = (℘(zj), ℘′(zj)), z1 + z2 + z3 = 0 ∈ C/L,

we obtain

℘(z1 + z2) =
1
4

(
℘′(z2)− ℘′(z1)
℘(z2)− ℘(z1)

)2

− ℘(z1)− ℘(z2) (7.5.8.1)

in the case z1 6= z2 ∈ C/L and

℘(2z) =
℘(z)4 + g2

2 ℘(z)2 + 2g3℘(z) + g2
2

16

4℘(z)3 − g2℘(z)− g3
. (7.5.8.2)

Differentiating (7.5.8.1-2) with respect to z1 (resp. z) yields explicit formulas for ℘′(z1 + z2) resp. ℘′(2z).

(7.5.9) Exercise. Show that, for each j = 1, 2, 3, there exists fj(z) ∈M(C/L) such that

℘(2z)− ej = ℘(2z)− ℘(ωj/2) = f2
j (z).

(7.5.10) Proposition. For each n ∈ Z − {0}, the multiplication by n map [n] : E(C) −→ E(C) is given
by rational functions of the coordinates, with coefficients in Q(g2, g3). In other words,

℘(nz), ℘′(nz) ∈ Q(g2, g3, ℘(z), ℘′(z)).

Proof. Induction on |n|, using (7.5.5.1) and (7.5.8.1-2).
(7.5.11) Torsion points. For each n ≥ 1, denote by

E(C)n = {P ∈ E(C) | [n]P = O}

the n-torsion subgroup of E(C) (which is an elliptic analogue of the group of n-th roots of unity from 0.6.0).
As

(C/L)n =
1
n
L/L =

(
1
n

Z/Z
)
ω1 ⊕

(
1
n

Z/Z
)
ω2,

it follows that

E(C)n = {O} ∪ {(℘((aω1 + bω2)/n), ℘′((aω1 + bω2)/n)) | (a, b) ∈ (Z/nZ)2 − {(0, 0)}}.

For n = 2, a point P = (x, y) ∈ E(C)− {O} satisfies

[2]P = O ⇐⇒ P = [−1]P ⇐⇒ (x, y) = (x,−y) ⇐⇒ y = 0;

Thus

E(C)2 = {O} ∪ {(e1, 0), (e2, 0), (e3, 0)}.

For n = 3, a point P ∈ E(C) satisfies [3]P = O iff [2]P � P = O, i.e. iff the tangent line to E at P has
intersection multiplicity with E at P equal to 3. Geometrically, this amounts to P being an inflection point
of E(C).
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7.6 Morphisms C/L1 −→ C/L2

Let L1, L2 ⊂ C be lattices and E1, E2 the corresponding cubic curves (as in 7.2.1).

(7.6.1) Proposition. (i) The set of holomorphic maps f : C/L1 −→ C/L2 satisfying f(0) = 0 is equal to

{f(z) = λz |λ ∈ C, λL1 ⊆ L2}.

In particular, each such map is a homomorphism of abelian groups (f(z1 + z2) = f(z1) + f(z2)).
(ii) The map E1(C) −→ E2(C) corresponding to f is given by

(℘(z;L1), ℘′(z;L1)) 7→ (℘(λz;L2), ℘′(λz;L2))

(and is also a homomorphism of abelian groups).
(iii) f is an isomorphism of Riemann surfaces ⇐⇒ λL1 = L2.

Proof. As C is simply connected and the projection pr2 : C −→ C/L2 is an unramified covering, there exists
a unique holomorphic map F : C −→ C satisfying F (0) = 0 and making the following diagram commutative:

C F−−→ Cypr1 ypr2
C/L1

f−−→ C/L2.

For each u ∈ L1, the function

g(z) = F (z + u)− F (z)

is holomorphic in C and has discrete image g(C) ⊆ L2; thus g(z) is constant and

0 = g′(z) = F ′(z + u)− F ′(z),

which implies that F ′(z) ∈ O(C/L) = C is constant as well, hence F (z) = λz + F (0) = λz for some λ ∈ C.
As pr2 ◦F = f ◦ pr1, we have λL1 = F (L1) ⊆ L2, proving the non-trivial implication in (i). The statements
(ii) and (iii) are immediate consequences of (i).

(7.6.2) Corollary. The j-function (7.1.10.2) defines a map

j : {Isomorphism classes of tori C/L} −→ C.

Proof. This follows from 7.6.1(iii) and j(λL) = j(L).
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(7.6.3) Definition. An isogeny f : C/L1 −→ C/L2 is a non-constant holomorphic map f satisfying
f(0) = 0.

(7.6.4) In other words, 7.6.1 implies that an isogeny is given by

f : C/L1 −→ C/L2

z 7→ λz, λL1 ⊆ L2, λ 6= 0.
(7.6.4.1)

It is a proper unramified covering of degree

deg(f) = |Ker(f)| = |λ−1L2/L1| = |L2/λL1|.

A typical example of an isogeny is the multiplication map

[n] : C/L −→ C/L, z 7→ nz (n ∈ Z− {0}),

which has degree

deg[n] =
∣∣∣∣ 1nL/L

∣∣∣∣ = n2.

(7.6.5) Dual isogeny. In the situation of (7.6.4.1), we have

deg(f) ·Ker(f) = 0 =⇒ deg(f) · λ−1L2 ⊆ L1.

This implies that the map

f̂ : C/L2
λ−1

−−→C/λ−1L2
deg(f)−−→C/L1

is well defined, and in fact is an isogeny – the dual isogeny to f . It is characterized by the properties

f̂ ◦ f = [deg(f)] : C/L1 −→ C/L1

f ◦ f̂ = [deg(f)] : C/L2 −→ C/L2.

For example,

[̂n] = [n] (n ∈ Z− {0}).

(7.6.6) Proposition. Let f : C/L1 −→ C/L2 be an isogeny. Then:
(i) Ker(f) acts on M(C/L1) by (u ∗ g)(z) = g(z − u) and the fixed field of this action is equal to

M(C/L1)Ker(f) = f∗(M(C/L2)) = {f∗(h) = h ◦ f |h ∈M(C/L2)}.

(ii) M(C/L1) is a finite Galois extension of f∗(M(C/L2)), with Galois group isomorphic to Ker(f).

Proof. (i) We use the notation (7.6.4.1). A function g ∈M(C/L1) satisfies u∗g = g for all u ∈ Ker(f) ⇐⇒
g(z) is λ−1L2-periodic ⇐⇒ h(z) = g(λ−1z) is L2-periodic ⇐⇒ g(z) = h(λz) = f∗(h), h ∈M(C/L2).
(ii) This follows from (i), by E. Artin’s Theorem.

(7.6.7) Definition. Let L ⊂ C be a lattice. The endomorphism ring of C/L is

End(C/L) = {f : C/L −→ C/L | f holomorphic, f(0) = 0} = {λ ∈ C |λL ⊆ L} ⊂ C.

Above, we have identified λ with the corresponding map [λ] : C/L −→ C/L.

(7.6.8) Proposition. Let L ⊂ C be a lattice. Then
(i) End(C/L) = End(C/λL) (λ ∈ C∗).
(ii) Let L = Zτ + Z, where Im(τ) > 0. Then

End(C/Zτ + Z) =

{
ZAτ + Z, if Aτ2 +Bτ + C = 0, A,B,C ∈ Z, (A,B,C) = 1

Z, otherwise.
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Proof. The statement (i) is clear. In (ii), assume that λ ∈ C − Z satisfies λL ⊆ L. Then there exist
a, b, c, d ∈ Z, a 6= 0 such that

λ · 1 = aτ + b

λ · τ = cτ + d

}
=⇒ aτ2 + (b− c)τ − d = 0.

Divide this quadratic equation by the gcd of the coefficients, in order to obtain Aτ2 +Bτ +C = 0 as in the
statement of the Proposition. Then

λ = aτ + b ∈ Zaτ + Z ⊆ ZAτ + Z (as A|a).

Conversely, the identities

Aτ · 1 = Aτ ∈ L, Aτ · τ = Aτ2 = −Bτ − C ∈ L

imply that ZAτ + Z is contained in End(C/Zτ + Z).

(7.6.9) Definition-Exercise. If End(C/L) 6= Z, we say that C/L has complex multiplication. Show
that K = End(C/L)⊗Q is then an imaginary quadratic field and deg([λ]) = NK/Q(λ) (λ ∈ End(C/L)).

(7.6.10) Examples: (1) L = Ziω + Zω, in which case End(C/L) = Z[i], g3 = 0 and g2 6= 0, i.e.

E − {O} : y2 = 4x3 − g2x.

(2) L = Zρω + Zω, where ρ = e2πi/3; then End(C/L) = Z[ρ], g2 = 0 and g3 6= 0, hence

E − {O} : y2 = 4x3 − g3.

(7.6.11) Definition-Exercise. Let L ⊂ C be a lattice. The group of automorphisms of C/L is defined
as the group of invertible elements of End(C/L):

Aut(C/L) = End(C/L)∗.

Show that Aut(C/L) = {f ∈ End(C/L) | deg(f) = 1} and

Aut(C/L) =


{±1,±i}, if L = Ziω + Zω

{±1,±ρ,±ρ2}, if L = Zρω + Zω

{±1}, otherwise.

8. Lemniscatology or Complex Multiplication by Z[i]

Throughout this section,
√
x will denote the non-negative square root of a non-negative real number x.

8.1 The curve y2 = 1− x4

(8.1.1) According to 3.7.7-8, the affine plane curve

Vaff : y2 = 1− x4

(over C) is smooth and its projectivization admits a smooth desingularization V = Vaff ∪ {O+, O−} with
two points at infinity, which correspond to the ‘asymptotics’

(x, y) −→ O± ⇐⇒ x −→∞, y/x2 −→ ±i.

In coordinates, let V ′aff be the smooth affine plane curve
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V ′aff : y′2 = x′4 − 1.

The change of variables

x′ = 1/x, y′ = y/x2, x = 1/x′, y = y′/x′2 (8.1.1.1)

defines an isomorphism of curves

Vaff − {(x, y) = (0,±1)} ∼−→ V ′aff − {(x′, y′) = (0,±i) = O±} (8.1.1.2)

and V is obtained by gluing Vaff and V ′aff along the common open subset Vaff − {(0,±1)} ∼−→ V ′aff − {O±}
via (8.1.1.2).

We shall need this construction only in the analytic context: as Vaff(C) and V ′aff(C) are Riemann
surfaces and (8.1.1.2) is a holomorphic isomorphism, we obtain a structure of a Riemann surface on V (C)
(cf. 8.1.2(i)).

(8.1.2) Exercise-Reminder (cf. 4.2.4-7). Let p : V (C) −→ P1(C) be the map defined by

p(x, y) = (x : 1), (x, y) ∈ Vaff(C); p(x′, y′) = (1 : x′), (x′, y′) ∈ V ′aff(C).

Show that
(i) The natural topology on V (C) is Hausdorff.
(ii) p is a proper holomorphic map of degree deg(p) = 2.
(iii) V (C) is compact.
(iv) The ramification points of p are (x, y) = (±1, 0), (±i, 0).
(v) The genus of V (C) is equal to g(V ) = 1.
(vi) The differential ωV = dx/y = −dx′/y′ is holomorphic on V (C) and has no zeros (i.e. (∀P ∈
V (C)), ordP (ωV ) = 0).

(8.1.3) As observed in 4.4.4, the same arguments as in 4.3-4 show that the group of periods

LV = {
∫
γ

ωV | γ ∈ H1(V (C),Z)} ⊂ C

is a lattice and the Abel-Jacobi map

αV : V (C) −→ C/LV , αV (Q) =
∫ Q

(0,1)

ωV (modLV ) (8.1.3.1)

is an isomorphism of Riemann surfaces.
(8.1.4) Let us compute a few values of αV . By definition,

αV ((0, 1)) = 0,

αV ((1, 0)) =
∫ 1

0

dx√
1− x4

=
Ω
2

(modLV )

αV ((0,−1)) = Ω (modLV )

αV ((−1, 0)) =
3
2

Ω (modLV ) = −Ω
2

(modLV ).

Indeed, the set of real points V (R) = Vaff(R) of V (say, with the negative orientation) is a closed path on
V (C), hence ∫

V (R)

ωV = 4
∫ 1

0

dx√
1− x4

= 2Ω ∈ LV .

Similarly, the substitution x = t−1 gives
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αV (O±)− αV ((1, 0)) =
∫ O±

(1,0)

ωV =
1
±i

∫ ∞
1

dx√
x4 − 1

=
1
±i

∫ 1

0

dt√
1− t4

= ∓iΩ
2
,

hence

αV (O±) =
1∓ i

2
Ω (modLV ). (8.1.4.1)

8.2 The lemniscate sine revisited

(8.2.1) The inverse of the Abel-Jacobi map (8.1.3.1) is an isomorphism of Riemann surfaces

ϕV : C/LV
∼−→ V (C).

By (8.1.4.1), ϕV restricts to a holomorphic isomorphism

C/LV − {
1± i

2
Ω (modLV )} ∼−→ Vaff(C), z 7→ (x(z), y(z)),

where x(z), y(z) are holomorphic functions on C/LV − { 1±i
2 Ω (modLV )} satisfying

y(z)2 = 1− x(z)4,
dx(z)
dz

= y(z) (as α∗V (dz) = dx/y) =⇒ x′(z)2 = 1− x(z)4.

(8.2.2) Definition of sl(z). In fact, x(z) is the restriction of the meromorphic function

sl : C/LV
ϕV−−→V (C)

p−−→P1(C),

where p is the map from 8.1.2. The function sl(z) is meromorphic on C/LV , holomorphic outside the two
points 1±i

2 Ω (modLV ) and satisfies

sl′(z)2 = 1− sl(z)4.

The isomorphism ϕV is given by the formulas

ϕV :

{
z 7→ (sl(z), sl′(z)), z 6= 1±i

2 Ω (modLV )

1±i
2 Ω 7→ O∓.

The calculations from 8.1.4 imply that

sl(0) = sl(Ω) = 0, sl(
Ω
2

) = 1 = −sl(−Ω
2

),

sl′(0) = 1 = −sl′(Ω), sl′(
Ω
2

) = sl′(−Ω
2

) = 0.

(8.2.3) Properties of sl(z). The maps [±i] : V (C) −→ V (C) defined by

[±i](x, y) = (±ix, y), (x, y) ∈ Vaff(C); [±i](x′, y′) = (∓ix′,−y′), (x′, y′) ∈ V ′aff(C)

are mutually inverse holomorphic isomorphisms satisfying [±i]∗(ωV ) = ±i ωV . This implies that

±i
∫
γ

ωV =
∫
γ

[±i]∗(ωV ) =
∫

[±i]◦γ
ωV ,

for any path γ on V (C). In particular, letting γ run through the representatives of H1(V (C),Z) we obtain
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iLV = LV .

Taking for γ a path from (0, 1) to Q yields

αV ([±i]Q) = ±i αV (Q) ⇐⇒ (sl(±iz), sl′(±iz)) = (±isl(z), sl′(z)) (8.2.3.1)

If 0 ≤ x ≤ 1, let y =
√

1− x4. Then

αV ((x, y)) =
∫ x

0

dt√
1− t4

αV ((−x,−y)) = αV ((0,−1)) +
∫ x

0

dt√
1− t4

= Ω + αV ((x, y)),

hence

sl(z + Ω) = −sl(z) (8.2.3.2)

for z ∈ [0,Ω/2]. It follows from 3.2.2.9 that (8.2.3.2) holds everywhere on C/LV . The relations (8.2.3.1-2)
imply that

sl(z + iΩ) = i sl(z/i+ Ω) = −i sl(z/i) = −sl(z)
sl(z + (1 + i)Ω) = −sl(z + iΩ) = sl(z),

hence

Z · (1 + i)Ω + Z · 2Ω = (1 + i)Z[i] · Ω ⊆ LV . (8.2.3.3)

As we shall see in 8.3.5 below, the inclusion (8.2.3.3) is in fact an equality.
As in 7.5.1, the bijection ϕV induces an abelian group law � on V (C) with neutral element (0, 1),

characterized by

(sl(z1), sl′(z1))� (sl(z2), sl′(z2)) = (sl(z1 + z2), sl′(z1 + z2)).

8.3 Relations between sl(z) and ℘(z)

(8.3.1) The cubic curve E. The smooth plane curves (over C)

Eaff : v2 = 4u3 − 4u = 4(u+ 1)u(u− 1)
E = Eaff ∪ {O}, O = (0 : 1 : 0)

are of the type considered in 7.2. In particular, ωE = du/v is a holomorphic differential without zeros on
E(C) and the Abel-Jacobi map

α : E(C) −→ C/L, α(P ) =
∫ P

O

ωE (modL)

is an isomorphism of Riemann surfaces, where

L = {
∫
γ

ωE | γ ∈ H1(E(C),Z)}

is the period lattice of ωE . According to 7.2.6(i), we have L = Zω1 + Zω2, where
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ω2

2
=
∫ ∞

1

dx√
4x3 − 4x

,
ω1

2
= i

∫ 1

0

dx√
4x− 4x3

(x=t−1)
=== i

∫ ∞
1

dt√
4t3 − 4t

= i
ω2

2
,

hence

ω1 = i ω2, L = Z[i] · ω2.

(8.3.2) A map between V and E. In terms of the variable z ∈ C, the inverse maps to α, αV are given
by

ϕ : C/L ∼−→ E(C), z 7→ (℘(z;L), ℘′(z;L)),

ϕV : C/LV
∼−→ V (C), z 7→ (sl(z), sl′(z)),

where

℘(z) ∼ z−2, sl(z) ∼ z as z −→ 0. (8.3.2.1)

The asymptotic relations (8.3.2.1) seem to suggest the following educated guess: perhaps

℘(z;L) ??=
1

sl(z)2
?? (8.3.2.2)

Does (8.3.2.2) hold? If true, then the identity(
1

sl(z)2

)′
= −2sl′(z)

sl(z)3

tells us that we should consider the map

f :

{ (x, y) 7→ (1/x2,−2y/x3), (x, y) ∈ Vaff(C)− {(0,±1)}
(0,±1) 7→ O,

(x′, y′) 7→ (x′2,−2x′y′), (x′, y′) ∈ V ′aff(C).

(8.3.3) Exercise. f defines a proper holomorphic map f : V (C) −→ E(C) of degree deg(f) = 2, which is
everywhere unramified.

(8.3.4) The formula

f∗(ωE) =
d(u ◦ f)
v ◦ f

=
d(1/x2)
−2y/x3

=
dx

y
= ωV = α∗V (dz)

implies that ϕ∗V ◦ f∗(ωE) = dz and

Ω
2

=
∫ (1,0)

(0,1)

ωV =
∫ (1,0)

(0,1)

f∗(ωE) =
∫ (1,0)

O

=
ω2

2
,

hence

L = Z[i] · Ω = Z · iΩ + Z · Ω.
(8.3.5) Proposition. The lattice LV is equal to

LV = Z · (1 + i)Ω + Z · 2Ω = (1 + i)L ⊂ L = Z · iΩ + Z · Ω,

and the following diagram is commutative:

C
pr−−→ C/LV

ϕV−−→ V (C)

‖
y yf

C
pr−−→ C/L

ϕ−−→ E(C).
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In particular,

℘(z;L) =
1

sl(z)2

and f is a homomorphism of abelian groups.

Proof. For each closed path γ on V (C),∫
γ

ωV =
∫
γ

f∗(ωE) =
∫
f(γ)

ωE ;

this implies that LV ⊆ L. Similarly, for each point Q ∈ V (C) we have

αV (Q) =
∫ Q

(0,1)

ωV (modLV ) =
∫ Q

(0,1)

f∗(ωE) (modLV ) =
∫ f(Q)

O

ωE (modLV ),

hence

αV (Q) (modL) = α(f(Q)) (modL).

This proves the commutativity of the diagram, as ϕ = α−1 and ϕV = α−1
V . We know from (8.2.3.3)

that L′ = Z · (1 + i)Ω + Z · 2Ω ⊆ LV . On the other hand, our diagram together with 7.6.4 imply that
|L/LV | = deg(f) = 2 = |L/L′|, hence L′ = LV .
(8.3.6) The dual isogeny. The duplication formula (7.5.8.2) and its derivative imply that the multiplication
by 2 on E(C) is given by

[2]E(u, v) =

((
u2 + 1
v

)2

,
2(u2 + 1)(u4 − 6u2 + 1)

v3

)
.

Define a map f̂ : E(C) −→ V (C) by f̂(O) = (0, 1) and

f̂((u, v)) =

 (x, y) =
(
− v
u2+1 ,

u4−6u2+1
(u2+1)2

)
, if u 6= ±i

(x′, y′) =
(
−u

2+1
v , u

4−6u2+1
v2

)
, if v 6= 0.

The map f̂ is holomorphic (exercise!) and satisfies

f ◦ f̂ = [2]E , f̂ ◦ f = [2]V .

(8.3.7) Exercise. (i) Show that the map [1 + i]V : V (C) −→ V (C) has the same kernel as f .
(ii) Show that there exists an isomorphism of Riemann surfaces g : V (C) ∼−→ E(C) such that g◦[1+i]V = f .
(iii) Find explicit formulas for g and g−1.

(8.3.8) Proposition. For each k ≥ 1,

G4k+2(Z[i]) = 0, G4k(Z[i]) =
∑

m,n∈Z

′ 1
(m+ ni)4k

= ck · Ω4k,

where ck ∈ Q is a (positive) rational number. For example, c1 = 1/15.

Proof. As iZ[i] = Z[i], the last formula in 7.1.6 implies that

G4k+2(Z[i]) = G4k+2(iZ[i]) = i−4k−2G4k+2(Z[i]) =⇒ G4k+2(Z[i]) = 0.

The Weierstrass function ℘(z) = ℘(z;L) satisfies the differential equation

℘′(z)2 = 4℘(z)3 − 4℘(z);
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differentiating, we obtain

℘′′(z) = 6℘(z)2 − 2. (8.3.8.1)

As

4 = g2(L) = 60G4(L) = 60G4(Z[i] · Ω),

it follows that

G4(Z[i]) = Ω4G4(Z[i] · Ω) =
Ω4

15
.

Substituting to (8.3.8.1) the Laurent series expansions

℘(z) =
1
z2

+
∞∑
k=1

(4k − 1)G4k(L)z4k−2

℘′(z)2 =
6
z4

+
∞∑
k=1

(4k − 1)(4k − 2)(4k − 3)G4k(L)z4k−4

and comparing the coefficients, we obtain, for each k > 1,

(4k − 1)((4k − 2)(4k − 3)− 12)G4k(L) = 6
∑
j+l=k
j,l≥1

(4j − 1)(4l − 1)G4j(L)G4l(L),

hence

G4k(Z[i]) · Ω−4k = G4k(Z[i] · Ω) = G4k(L) ∈ Q

is rational (and positive), by induction.

(8.3.9) Exercise. (i) What is the analogue of 8.3.8 (and of its proof) if we replace σ(z) by sin(z)?
(ii) Compute the first few values of ck. What can one say about the denominators of the numbers (4k−1)!·ck?
(iii) What is the analogue of (ii) in the context of (i)?

8.4 The action of Z[i]

(8.4.1) As iL = L and iLV = LV , both C/L and C/LV are Z[i]-modules. Transporting this structure to
E(C) (resp. V (C)) by ϕ (resp. ϕV ), we obtain an action of Z[i] on E(C) (resp. V (C)) given by

[α]E(℘(z), ℘′(z)) = (℘(αz), ℘′(αz))
[α]V (sl(z), sl′(z)) = (sl(αz), sl′(αz))

(α ∈ Z[i]).

The maps f, f̂ from 8.3.2,6 are then homomorphisms of Z[i]-modules.
For example, the relations (7.1.6) and (8.2.3.1) imply that

[±i]E(u, v) = (−u,±iv), [−1]E(u, v) = (u,−v)
[±i]V (x, y) = (±ix, y), [−1]V (x, y) = (−x, y).

(8.4.1.1)

Denoting the α-torsion submodules by

E(C)α = E(C)[α] = {P ∈ E(C) | [α]EP = O}
V (C)α = V (C)[α] = {Q ∈ V (C) | [α]VQ = (0, 1)},

then it follows from (8.4.1.1) that

E(C)[1 + i] = {O, (0, 0)}, V (C)[1 + i] = {(0,±1)}.
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(8.4.2) Group law on V (C). The addition formula (1.4.5.1) (whose more general form was proved in
2.3.1) can be written as

sl(z1 + z2) =
sl(z1)sl′(z2) + sl′(z1)sl(z2)

1 + sl2(z1)sl2(z2)
. (8.4.2.1)

Differentiating (8.4.2.1) with respect to z1, we obtain an explicit formula for the group law � on V (C):

(x1, y1)� (x2, y2) =
(
x1y2 + x2y1

1 + x2
1x

2
2

,
y1y2(1− x2

1x
2
2)− 2x1x2(x2

1 + x2
2)

(1 + x2
1x

2
2)2

)
. (8.4.2.2)

Above, (xj , yj) = (sl(zj), sl′(zj)) ∈ Vaff(C).
Multiplying together the formulas (8.4.2.1) for ±z2, we obtain

sl(z1 + z2)sl(z1− z2) =
x2

1y
2
2 − x2

2y
2
1

(1 + x2
1x

2
2)2

=
x2

1(1− x4
2)− x2

2(1− x4
1)

(1 + x2
1x

2
2)2

=
x2

1 − x2
2

1 + x2
1x

2
2

=
sl2(z1)− sl2(z2)
1 + sl2(z1)sl2(z2)

. (8.4.2.3)

(8.4.3) Exercise. Show that, for (x, y) ∈ Vaff(C),

(x, y)�O± =
(
± i
x
,∓iyx2

)
.

[Hint: Rewrite (8.4.2.2) in the variables x′, y′.]

(8.4.4) Examples. Combining (8.4.1.1) with (8.4.2.2), we recover Fagnano’s formulas from 1.4.3-4:

[1± i](x, y) = (x, y)� (±ix, y) =
(

(1± i)x
y

,
1 + x4

y2

)
=
(

(1± i)x
y

,
1 + x4

1− x4

)
[2](x, y) = (x, y)� (x, y) =

(
2xy

1 + x4
,

1− 6x4 + x8

(1 + x4)2

)
,

(8.4.4.1)

where (x, y) ∈ Vaff(C) (i.e. y2 = 1− x4).
Note that sl′(αz) can be obtained from sl(αz) by differentiation. If (x, y) = (sl(z), sl′(z)), then

[α](x, y) = (xα, yα) = (sl(αz), sl′(αz)),

where xα, yα are rational functions of x, y with coefficients in Q(i), satisfying

dxα = α sl′(αz) dz = α yα dz, dx = sl′(z) dz = y dz,

hence

yα
dx

y
=

1
α
dxα. (8.4.4.2)

This means that one can obtain yα from xα by a very simple calculation.
For example, for α = 1 + i, we have x1+i = (1 + i)x/y. Combining (8.4.4.2) with

d(x4 + y2 − 1) = 0 =⇒ 4x3 dx+ 2y dy = 0 =⇒ dy = −2x3/y dx,

we obtain

dx1+i

1 + i
=
dx

y
− x dy

y2
=
dx

y

(
y2 + 2x4

y2

)
,

hence

y1+i =
y2 + 2x4

y2
=

1 + x4

y2
,
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in line with (8.4.4.1).
(8.4.5) Examples (continued). Let us compute

[1 + 2i](x, y) = [i](x, y)� [1 + i](x, y) = (ix, y)�
(

(1 + i)x
y

,
1 + x4

1− x4

)
= (x1+2i, y1+2i).

As

x1+2i =
ix(1+x4)

1−x4 + (1 + i)x

1− 2ix4

1−x4

=
(1 + 2i)x− x5

1− (1 + 2i)x4
=

(1 + 2i)− x4

1− (1 + 2i)x4
x, (8.4.5.1)

it follows from (8.4.4.2) that

y1+2i
dx

y
=
dx1+2i

1 + 2i
=

1− (1− 2i)x4

1− (1 + 2i)x4
dx+

(1 + 2i)x− x5

(1− (1 + 2i)x4)2
4x3dx =

1 + (2 + 8i)x4 + x8

(1− (1 + 2i)x4)2
dx,

hence

y1+2i =
1 + (2 + 8i)x4 + x8

(1− (1 + 2i)x4)2
y. (8.4.5.2)

In the similar vein,

[3](x, y) = (x, y)�
(

2xy
1 + x4

,
1− 6x4 + x8

(1 + x4)2

)
= (x3, y3),

where

x3 =
x(1−6x4+x8)

(1+x4)2 + 2x(1−x4)
1+x4

1 + 4x4(1−x4)
(1+x4)2

=
3− 6x4 − x8

1 + 6x4 − 3x8
x (8.4.5.3)

and

y3
dx

y
=
dx3

3
=

1− 10x4 − 3x8

1 + 6x4 − 3x8
dx− (3− 6x4 − x8)(8x4 − 8x8)

(1 + 6x4 − 3x8)2
dx =

1− 28x4 + 6x8 − 28x12 + x16

(1 + 6x4 − 3x8)2
dx,

hence

y3 =
1− 28x4 + 6x8 − 28x12 + x16

(1 + 6x4 − 3x8)2
y. (8.4.5.4)

(8.4.6) A change of sign. The formulas (8.4.5.1-4) become more symmetric if we apply [−1](x, y) =
(−x, y):

[−1− 2i] (x, y) =
(
x4 − (1 + 2i)
1− (1 + 2i)x4

x,
1 + (2 + 8i)x4 + x8

(1− (1 + 2i)x4)2
y

)
(8.4.6.1)

[−3] (x, y) =
(
x8 + 6x4 − 3
1 + 6x4 − 3x8

x,
1− 28x4 + 6x8 − 28x12 + x16

(1 + 6x4 − 3x8)2
y

)
. (8.4.6.2)

(8.4.7) Congruences. Note that

1 + (2 + 8i)x4 + x8 ≡ (1− x4)2 ≡ y4 (mod (−1− 2i)),
1− 28x4 + 6x8 − 28x12 + x16 ≡ (1− x4)4 ≡ y8 (mod (−3));
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the formulas (8.4.6.1-2) then imply that

[−1− 2i] (x, y) ≡ (x5, y5) (mod (−1− 2i)),

[−3] (x, y) ≡ (x9, y9) (mod (−3)).
(8.4.7.1)

These congruences should be interpreted as follows: α = −1 − 2i (resp. α = −3) is an irreducible element
of Z[i] of norm Nα = αα = 5 (resp. Nα = 9) and both components xα, yα of [α](x, y) are elements of the
localization R(α) of the polynomial ring R = Z[i][x, y] at the prime ideal generated by α; it makes sense,
therefore, to consider the residue classes of xα, yα modulo αR(α) as elements of the residue field of R(α),
which is equal to

R(α)/αR(α) = Frac(k(α)[x, y]) = k(α)(x, y),

i.e. to the field of rational functions in x, y over the finite field k(α) = Z[i]/αZ[i] with Nα elements.
(8.4.8) Making a Conjecture. What is the general form of (8.4.7.1)? What distinguishes the values
α = −1− 2i,−3 from 1 + 2i, 3, for which we have

[1 + 2i] (x, y) ≡ (−x5, y5) (mod (1 + 2i)),

[3] (x, y) ≡ (−x9, y9) (mod (3))?
(8.4.7.1)

Recall that the cogruences 0.5.1

[p∗]C(x, y) ≡ (xp, yp) (mod p) (8.4.7.2)

for the group law on the circle involved multiplication by

p∗ = (−1)(p−1)/2p, (8.4.7.3)

for odd prime numbers p. As

p∗ ≡ 1 (mod 4),

it is natural to ask whether there is a similar congruence condition characterizing α = −1 − 2i,−3 ∈ Z[i].
In these two cases

α− 1 =

{
(−1− 2i)− 1 = −2− 2i = (−1)(2 + 2i),

(−3)− 1 = −4 = (−1 + i)(2 + 2i),

which would suggest the following

(8.4.9) Conjecture. If α ∈ Z[i] is an irreducible element satisfying α ≡ 1 (mod (2 + 2i)), then

[α](x, y) ≡ (xNα, yNα) (modα),

where Nα = αα.

(8.4.10) What are these congruences good for? In the case of the circle, the quantity (8.4.7.3) appears
in the statement (and various proofs) of the Quadratic Reciprocity Law. In fact, as we shall see in 9.2 below,
the congruence (8.4.7.2) can be used to prove the Quadratic Reciprocity Law.

Assuming that 8.4.9 holds, can one deduce from it a more general Reciprocity Law – perhaps for higher
powers – involving elements of Z[i]? We shall investigate this question in section 9.

8.5 Division of the lemniscate

(8.5.1) Algebraic properties of the numbers sin(πa/n) are intimately linked to geometry of regular polygons.
Their lemniscatic counterparts sl(aΩ/n) are the polar coordinates of the points that divide the right half-
lemniscate into n arcs of equal length Ω/n.
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Note that, if 0 < a < n, then

0 < sl(aΩ/n) < 1, sgn(sl′(aΩ/n)) = sgn(a− n/2). (8.5.1.1)

(8.5.2) Examples. (n = 3): let (x, y) = (sl(Ω/3), sl′(Ω/3)) ∈ V (R). As

[3](x, y) = (sl(Ω), sl′(Ω)) = (0,−1),

the triplication formula (8.4.5.3) implies that x is a root of

x8 + 6x4 − 3 = 0;

the only root of this equation contained in the interval (0, 1) is x = 4
√

2
√

3− 3; applying (8.5.1.1) once again
we see that y =

√
1− x4 is the positive square root; thus

(sl(Ω/3), sl′(Ω/3)) = (
4
√

2
√

3− 3,
√

3− 1). (8.5.2.1)

The values (8.5.2.1) can also be deduced from Fagnano’s duplication formula, as

[2](a, b) = (sl(Ω− Ω/3), sl′(Ω− Ω/3)) = (a,−b).

(n = 4): The point (x, y) = (sl(Ω/4), sl′(Ω/4)) satisfies

[2](x, y) = (sl(Ω/2), sl′(Ω/2)) = (1, 0),

hence the duplication formula for sl′ (8.4.4.1) implies that x is a root of

x8 − 6x4 + 1 = 0.

As in the case n = 3, there is precisely one root contained in the interval (0, 1), which is easily calculated.
The final result is

(sl(Ω/4), sl′(Ω/4)) = (
√√

2− 1,
√

2
√

2− 2). (8.5.2.2)

(8.5.3) Constructibility. The attentive reader will have noticed that all values occurring in (8.5.2.1-
2) involve only iterated square roots of rational numbers. Such expressions are precisely the ‘constructible’
numbers in the sense of Euclidean geometry, i.e. those equal to distances between points obtained by iterated
intersections of lines and circles, starting from a segment of unit length.

The corresponding elementary counterparts of 8.5.2.1-2, namely the numbers

sin(π/3) =
√

3/2, sin(π/4) =
√

2/2,

are constructible for the simple reason that for the small values n = 3, 4 the regular n-gon is constructible.

(8.5.4) Exercise. (i) Let P = (a, b) (a ≥ 0) be a point on the lemniscate. Show that:

the two numbers a, b are constructible ⇐⇒ r =
√
a2 + b2 is constructible.

Of course, r = sl(s), where s is the length of the arc of the lemniscate from (0, 0) to P ; cf. 1.3.1.
(ii) sl(s) is constructible ⇐⇒ sl(2s) is constructible.
(iii) For each m ≥ 0, the points dividing the half-lemniscate into n = 2m (resp. n = 3 · 2m) arcs of equal
length Ω/n are all constructible.
(iv) What about the case n = 5? (Note that the regular pentagon is constructible, as cos(2π/5) =
(
√

5− 1)/2.) [Hint: Ω/(1 + 2i) + Ω/(1− 2i) = 2Ω/5; use (8.4.5.1-2).]
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9. Lemniscatology continued: Reciprocity Laws (1)

9.1 Quadratic Reciprocity Law

(9.1.1) Irreducible quadratic polynomials

f(x) = ax2 + bx+ c (a, b, c ∈ Z, a 6= 0)

with integral coefficients have the following remarkable property: only 50 % of prime numbers appear in
the factorization of the values f(x) (x ∈ Z); such prime numbers are characterized by suitable congruence
conditions modulo |b2 − 4ac|.

For example, the prime numbers p 6= 2 (resp. p 6= 2, 3) occurring as factors of the numbers of the form
x2 + 1 (resp. x2 + 3) are precisely the prime numbers p ≡ 1 (mod 4) (resp. p ≡ 1 (mod 3)).

By completing the square

4af(x) = (2ax+ b)2 − (b2 − 4ac),

it is enough to consider the polynomials f(x) = x2 − a; the answer can then be formulated in terms of the
Legendre symbol.
(9.1.2) The Legendre symbol. If a ∈ Z and p is a prime number not dividing 2a, one defines(

a

p

)
=

{
+1, (∃x ∈ Z) x2 ≡ a (mod p)

−1, (∀x ∈ Z) x2 6≡ a (mod p).

The multiplicative group (Z/pZ)∗ is cyclic of order p− 1; this implies that(
a

p

)
≡ a

p−1
2 (mod p) (9.1.2.1)

(“Euler’s criterion”). In other words, the Legendre symbol induces an isomorphism of abelian groups

F∗p/F
∗2
p

∼−→ {±1}, a 7→
(
a

p

)
.

In particular, (
ab

p

)
=
(
a

p

)(
b

p

)
(9.1.2.2)

and (
−1
p

)
= (−1)

p−1
2 =

{
+1, p ≡ 1 (mod 4),

−1, p ≡ 3 (mod 4).
(9.1.2.3)

(9.1.3) Lemma (Gauss). Let q 6= 2 be a prime number; fix a subset Σ ⊂ Z/qZ−{0} such that Z/qZ−{0} =
Σ
•
∪(−Σ) (disjoint union). For example, we can take Σ = {1, 2, . . . , (q − 1)/2}. Fix an integer a ∈ Z, q - a.

For each σ ∈ Σ there is a unique pair εσ = ±1 and σ′ ∈ Σ satisfying aσ = εσσ
′ ∈ (Z/qZ)∗; then∏

σ∈Σ

εσ =
(
a

q

)
.

Proof. Dividing both sides of the equality

a
q−1

2

∏
σ∈Σ

σ =
∏
σ∈Σ

(aσ) =

(∏
σ∈Σ

εσ

) ∏
σ′∈Σ

σ′ ∈ (Z/qZ)∗

(1) Section 9 is not for examination.
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by ∏
σ∈Σ

σ ∈ (Z/qZ)∗

yields the result.

(9.1.4) Exercise. Applying 9.1.3 to a = 2, show that

(
2
p

)
= (−1)

p2−1
8 =

{
+1, p ≡ ±1 (mod 8),

−1, p ≡ ±3 (mod 8).

(9.1.5) Quadratic Reciprocity Law. Let p 6= q be prime numbers, p, q 6= 2. Then

(
q

p

)
=
(
p

q

)
(−1)

p−1
2 ·

q−1
2 .

(9.1.6) Using (9.1.2.1-2), the Quadratic Reciprocity Law can also be written as(
p∗

q

)
=
(
q

p

)
, p∗ = (−1)

p−1
2 p.

(9.1.7) Let a ∈ Z− {0, 1} be a square-free integer. Writing a in the form

a = (−1)u2vp∗1 · · · p∗w, p∗j = (−1)
pj−1

2 pj ,

where u, v ∈ {0, 1} and pj are distinct odd primes, the Quadratic Reciprocity Law implies that we have, for
each prime q - 2|a|, (

a

q

)
=
(
−1
q

)u(2
q

)v(
q

p1

)
· · ·
(
q

pw

)
. (9.1.7.1)

As the value of
(
q
pj

)
(resp.

(
−1
q

)
, resp.

(
2
q

)
) depends only on the residue class of q modulo pj (resp.

modulo 4, resp. modulo 8), it follows from (9.1.7.1) that
(
a
q

)
depends only on the residue class of q modulo

A, where

A =

{
|a|, a ≡ 1 (mod 4)

4|a|, a 6≡ 1 (mod 4).
(9.1.7.2)

Moreover, if qj (j = 1, 2, 3) are primes not dividing 2|a| satisfying

q1q2 ≡ q3 (modA),

then (9.1.7.1) together with (9.1.2.2-3) and 9.1.4 imply that(
a

q1

)(
a

q2

)
=
(
a

q3

)
.

As each congruence class in (Z/AZ)∗ contains a prime number, the previous discussion implies the following
result.
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(9.1.8) Proposition. If a ∈ Z − {0, 1} is a square-free integer and A is defined by (9.1.7.2), then there
exists a unique surjective homomorphism of abelian groups

χa : (Z/AZ)∗ −→ {±1}

satisfying

χa(q (modA)) =
(
a

q

)
for all prime numbers q - 2|a|.

(9.1.9) Example: For a = 3 = (−1) · (−3) = (−1) · 3∗,(
3
q

)
=
(
−1
q

)(
−3
q

)
=
(
−1
q

)(q
3

)
=

{
+1, q ≡ ±1 (mod 12)

−1, q ≡ ±5 (mod 12)

for every prime q 6= 2, 3.

(9.1.10) If a = p∗, where p 6= 2 is a prime number, then A = p. There is only one surjective homomorphism

(Z/pZ)∗ −→ {±1},

namely the Legendre symbol; thus 9.1.8 implies that(
p∗

q

)
=
(
q

p

)
for all primes q 6= 2, p. In other words, 9.1.8 is a strengthening of the Quadratic Reciprocity Law.

9.2 Quadratic Reciprocity Law and sin(z)

In this section we deduce the Quadratic Reciprocity Law from the congruence 0.5.1 (cf. 9.2.3 below) and
the following simple product formula.

(9.2.1) Proposition (Product Formula (P)). Let n ∈ N, 2 - n. Fix a subset Σ ⊂ Z/nZ−{0} such that

Z/nZ− {0} = Σ
•
∪(−Σ) (disjoint union). Then(∏

σ∈Σ

2 sin
2πσ
n

)2

= n. (P )

Proof. The addition formulas for sin(z) imply that

sin(z1 + z2) + sin(z1 − z2) = 2 sin(z1) cos(z2)

sin(z1 + z2) · sin(z1 − z2) = sin2(z1)− sin2(z2).

Putting z1 = (n − 2)z and z2 = 2z (thus cos(z2) = 1 − 2 sin2(z)), it follows by induction that, for every
n ∈ N, 2 - n, there is a polynomial Qn(t) ∈ Z[t] satisfying

sin(nz) = Qn(sin(z)), Qn(t) = (−1)
n−1

2 2n−1tn + · · ·+ nt. (9.2.1.1)

As the values of sin(z) at z ∈ 2π
n Z are all roots of Qn, we obtain from (9.2.1.1) that

Qn(t) = t
∏
σ∈Σ

22

(
sin

2πσ
n
− t
)(

sin
2πσ
n

+ t

)
. (9.2.1.2)

Putting t = 0 (and again using (9.2.1.1)) yields the product formula (P).
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(9.2.2) Lemma. If n ∈ N, 2 - n and a ∈ Z, then 2n−1 sin 2πa
n is an algebraic integer. [In fact, one can

replace in this statement 2n−1 by 2, but this is not important for what follows.]

Proof. This follows from (9.2.1.1-2).

(9.2.3) Proposition (Congruence Formula (C)). Let p 6= 2 be a prime. Then

Qp(t) ≡ (−1)
p−1

2 tp (mod pZ[t]). (C)

Proof. As sin(−z) = − sin(z), the polynomial Qp(t) is an odd function, hence of the form Qp(t) = tM(t2),
with M(t) ∈ Z[t]. As

cos(pz) = sin(π2 − pz) = (−1)
p−1

2 sin(p(π2 − z)) = (−1)
p−1

2 Qp(sin(π2 − z)) = (−1)
p−1

2 Qp(cos(z)), (9.2.3.1)

differentiating the relation sin(pz) = Qp(sin(z)) we obtain

p(−1)
p−1

2 Qp(cos(z)) = p cos(pz) = Q′p(sin(z)) cos(z),

hence

Q′p(sin(z)) = p(−1)
p−1

2 M(cos(z)2),

Q′p(t) = p(−1)
p−1

2 M(1− t2) ∈ pZ[t]
(9.2.3.2)

As Qp(t) =
∑
ait

i is a polynomial of degree p with integral coefficients, the congruence (9.2.3.2) implies that

Qp(t) ≡ aptp (mod pZ[t]).

However,

ap = (−1)
p−1

2 2p−1 ≡ (−1)
p−1

2 (mod p),

by (9.2.1.1).

(9.2.4) Corollary. Assume that sin(α) ∈ Q is an algebraic number (α ∈ C) andO a subring of Q containing
sin(α). If p 6= 2 is a prime number, then sin(p∗α) ∈ O and

sin(p∗α) ≡ sin(α)p (mod pO) (p∗ = (−1)
p−1

2 p).

(9.2.5) Corollary. Let p 6= 2 be a prime number and n ∈ N, (n, 2p) = 1. Let OKn be the ring of algebraic
integers in the field Kn = Q(sin 2πa

n | a ∈ Z/nZ). Then, for each a ∈ Z,

sin
(

2πp∗a
n

)
≡
(

sin
2πa
n

)p
(mod pOKn [1/2]).

(9.2.6) The congruence 0.5.1

[p∗](x, y) ≡ (xp, yp) (mod pZ[x, y])

is a simple combination of 9.2.3 with (9.2.3.1). This method of proof is much more complicated then the
one suggested in 0.5.1, but it can be generalized (at least partially) to the lemniscatic case, as we shall see
in 9.4 below.

(9.2.7) In fact, one can deduce the Congruence Formula (C) directly from the Product Formula (P), with
a little help from algebraic number theory:
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(9.2.8) Proposition. Let p 6= 2 be a prime. Then the polynomial Rp(t) = (−1)
p−1

2 Qp(t)/t ∈ Z[t] satisfies

Rp(t) ≡ tp−1 (mod pZ[t]).

Proof. By (9.2.1.2) and 9.2.2, we have

Rp(t) = 2p−1

p−1∏
r=1

(t− αr), αr = sin
2πr
p
∈ OKp [1/2].

The Product Formula (P) from 9.2.1

Rp(0) = 2p−1

p−1∏
r=1

αr = p

implies that there exists a prime ideal p|p in OKp and an index 1 ≤ r0 ≤ p − 1 such that p|αr0 . For each
r ∈ (Z/pZ)∗ there exists s ∈ N satisfying 2 - s and t ≡ r0s (mod p). Then

αr = Qs(αr0), Qs(t) ∈ Z[t], Qs(0) = 0 =⇒ p|αr.

This means that p divides all αr, hence

Rp(t) ≡ 2p−1tp−1 (mod pOKp [1/2][t]).

As Rp(t) ∈ Z[t], we conclude that

Rp(t) ≡ 2p−1tp−1 ≡ tp−1 (mod pZ[t]).

(9.2.9) Deducing Quadratic Reciprocity Law from (P), (C) and 9.1.3. We are now ready to prove
9.1.6. Fix Σ as in 9.1.3 and put

S =
∏
σ∈Σ

(
2 sin

2πq
q

)
, S′ =

∏
σ∈Σ

(
2 sin

2πp∗q
q

)
∈ OKq [1/2].

Applying 9.1.3 with a = p∗ and using the identity sin(−z) = − sin(z), we obtain

S′ =
∏
σ∈Σ

(
2 sin

2πεσσ′

q

)
=
∏
σ∈Σ

(
2εσ sin

2πσ′

q

)
=

(∏
σ∈Σ

εσ

) ∏
σ′∈Σ

(
2 sin

2πσ′

q

)
=
(
p∗

q

)
S. (9.2.9.1)

Combined with (C) in the form 9.2.5, this yields(
p∗

q

)
S = S′ ≡ (2

1−q
2 )p−1Sp ≡ Sp (mod pOKq [1/2]). (9.2.9.2)

According to (P), we have S2 = q; as q is invertible in Z/pZ ⊂ OKq/pOKq = OKq [1/2]/pOKq [1/2], it follows
that we can divide (9.2.9.2) by S, obtaining (again using (P))(

p∗

q

)
≡ Sp−1 = (S2)

p−1
2 = q

p−1
2 (mod pOKq [1/2]). (9.2.9.3)

Applying Euler’s criterion (9.1.2.1), we obtain from (9.2.9.3)(
p∗

q

)
≡
(
q

p

)
(mod pOKq [1/2]) =⇒

(
p∗

q

)
≡
(
q

p

)
(mod pZ) (9.2.9.4)

(as both sides are equal to ±1 and OKq ∩ Q = Z). Finally, the congruence (9.2.9.4) between elements of
{±1} must be an equality, since −1 6≡ 1 (mod pZ).
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(9.2.10) Exercise. Using the values S = 2 sin 2π
8 and S′ = 2 sin 2πp∗

8 , show that

(
2
p

)
=
S′

S
= (−1)

p∗−1
4 =

{
1, p ≡ ±1 (mod 8)

−1, p ≡ ±3 (mod 8).

Conjecture 8.4.9 was stated and proved by Eisenstein in 1850
(9.2.11) What next? Is there a lemniscatic version of all that has been done in 9.1-2? Yes, there is.
In fact, the congruence 8.4.9 was proved by Eisenstein in 1850 in order to deduce from it the Biquadratic
Reciprocity Law ([Sc]).

If Eisenstein could do it, why not you?

The impatient readers may go straight away to sections 9.3-5. Others may want to pause and think
about generalizing everything from 9.1-2 to the lemniscatic case, replacing Z, 2π and sin(z) by Z[i],Ω and
sl(z), respectively. They would not regret this adventure!
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9.3 The Product Formula for sl(z)

We follow the notation of Section 8 (in particular, L = Z[i] · Ω).

(9.3.1) Definition. Let α ∈ Z[i], 2 - Nα. Fix a subset Σα ⊂
(

1
αL/L

)
− {0} satisfying

(
1
αL/L

)
− {0} =

Σα
•
∪(iΣα)

•
∪(−Σα)

•
∪(−iΣα) (thus |Σα| = (Nα− 1)/4) and put

Pα(t) =
∏

u∈ 1
αL/L

(t− sl(u)) = t
∏
u∈Σα

(t4 − sl4(u)) ∈ C[t]

Qα(t) =
∏

u∈( 1
αL/L)−{0}

(1− t sl(u)) =
∏
u∈Σα

(1− t4sl4(u)) ∈ C[t]

(the values of sl(z) at z = u ∈ 1
αL/L are finite, by 9.3.5 below). Note that

Qα(t) = tNαPα(1/t). (9.3.1.1)

(9.3.2) Lemma. For each α ∈ Z[i], 2 - Nα, we have

Qα(sl(z + 1±i
2 Ω)) =

Pα(sl(z))
sl(z)Nα

Proof. This follows from 8.4.3, which reads as follows:

sl(z + 1±i
2 Ω) =

∓i
sl(z)

(9.3.2.1)

(9.3.3) Exercise. For z1, z2 ∈ C,

sl(z1) = sl(z2) ⇐⇒ z1 − z2 ∈ LV or z1 + z2 ∈ LV + Ω

(note that L = LV
•
∪(LV + Ω)).

(9.3.4) Lemma. If α, β ∈ Z[i] and 2 - (Nα)(Nβ), then (Pα(t), Qβ(t)) = 1 (i.e. Pα(t) and Qβ(t) have no
common roots).

Proof. If there were a common root, we would have Pα(sl(z)) = Qβ(sl(z)) = 0 for some z ∈ C. This would
imply, by 9.3.2-3, that

z ∈ 1
α
L/L ∩

(
1
β
L+

1± i
2

Ω
)

=⇒ βL ∩
(
αL+

αβ(1± i)
2

Ω
)
6= ∅ =⇒ αβ(1± i)

2
Ω ∈ L = Z[i] · Ω,

hence αβ ∈ (1 + i)Z[i], which contradicts the assumption 2 - (Nα)(Nβ).

(9.3.5) Lemma. div(sl(z)) = (0) + (Ω)− ( 1+i
2 )− ( 1−i

2 ) ∈ Div(C/LV ).

Proof. This follows from the fact that

div(x) = ((0, 1)) + ((0,−1))− (O+)− (O−) ∈ Div(V (C)).

(9.3.6) Corollary. The function sl : C −→ P1(C) has simple zeros (resp. simple poles) at z ∈ L =
LV

•
∪(LV + Ω) (resp. at z ∈ L+ 1+i

2 ) and no other zeros (resp. poles).

(9.3.7) Proposition. Let α ∈ Z[i], 2 - Nα. Then there exists a (unique) constant cα ∈ C∗ such that

sl(αz) =
Pα(sl(z))
cαQα(sl(z))

(z ∈ C). (9.3.7.1)
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Proof. The functions sl(αz), Pα(sl(z)), and Qα(sl(z)) are LV -periodic and meromorphic on C/LV . By 9.3.6,
sl(αz) has simple zeros at 1

αL and simple poles at

1
α

(
L+

1± i
2

Ω
)

=
1
α
L+

1± i
2

Ω

(the equality follows from the fact that α− 1 ∈ (1 + i)Z[i]). Similarly, Pα(sl(z)) has simple zeros at 1
αL and

poles order Nα at L+ 1+i
2 Ω, while Qα(sl(z)) has poles of order (Nα− 1) at L+ 1+i

2 Ω and simple zeros at(
1
αL \ L

)
+ 1+i

2 Ω, hence

div(sl(αz)) = div
(
Pα(sl(z))
Qα(sl(z))

)
∈ Div(C/LV ).

Proposition follows.

(9.3.8) Corollary. If α ∈ Z[i], 2 - Nα, then∏
u∈Σα

sl4(u) = (−1)
Nα−1

4 cα · α.

Proof. Differentiating (9.3.7.1) yields

α sl′(αz) =
P ′αQα − PαQ′α

cαQ2
α

(sl(z)) sl′(z). (9.3.8.1)

Putting z = 0 (and using the fact that sl′(0) = 1 6= 0), we obtain

cα · α =
P ′α(0)
Qα(0)

=
∏
u∈Σα

(−sl(u))4 = (−1)
Nα−1

4

∏
u∈Σα

sl4(u).

(9.3.9) Normalization of α. There are 8 residue classes in Z[i] modulo 2 + 2i = −i(1 + i)3, of which 4
are invertible. More precisely, the reduction map Z[i] −→ Z[i]/(2 + 2i) induces an isomorphism

{±1,±i} = Z[i]∗ ∼−→ (Z[i]/(2 + 2i))∗.

This implies that, for each α ∈ Z[i] with 2 - Nα, there is a unique element dα ∈ {±1,±i} satisfying

α · dα ≡ 1 (mod (2 + 2i)).

This should be compared to the isomorphism

{±1} = Z∗ ∼−→ (Z/4Z)∗

and the congruence

n∗ := n · (−1)
n−1

2 ≡ 1 (mod 4)

(for n ∈ Z, 2 - n).

(9.3.10) Proposition. Let α ∈ Z[i], 2 - Nα. Then Pα(t), Qα(t) ∈ Z[i][t] and cα = dα.

Proof. We use induction on Nα. Assume first that Nα = 1. In this case α ∈ {±1,±i}, Σα = ∅, Pα(t) = t,
Qα(t) = 1, sl(αz) = αsl(z), hence α · cα = 1 as required.

In general, applying (8.4.2.3) with z1 = αz and z2 = (1± i)z and using 9.3.7, we obtain

∏
ε=±1

Pα+ε(1±i)(t)
cα+ε(1±i)Qα+ε(1±i)(t)

=
(t4 − 1)P 2

α(t)± 2ic2αt
2Q2

α(t)
∓2it2P 2

α(t) + (t4 − 1)c2αQ2
α(t)

.
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By 9.3.4, there is no cancellation of terms between the numerator and the denominator on the L.H.S. As the
degree of the numerator (resp. the denominator) of the R.H.S. is equal to 2Nα + 4 (resp. is ≤ 2Nα + 2)
and the leading term of each Pβ(t) is tNβ , it follows that we have exact equalities between the numerators
and denominators on both sides:

Pα+(1±i)(t)Pα−(1±i)(t) = (t4 − 1)P 2
α(t)± 2ic2αt

2Q2
α(t)

(c ·Q)α+(1±i)(t) (c ·Q)α−(1±i)(t) = ∓2it2P 2
α(t) + (t4 − 1)c2αQ

2
α(t).

(9.3.10.1)

Assume that Proposition is already proved for α and α − ε(1 + δi) (for fixed ε, δ = ±1). The first line of
(9.3.10.1) implies that P (t) = Pα+ε(1+δi)(t) is a polynomial with coefficients in Q(i). Recall that the contents
of such a polynomial is the principal fractional ideal of Q(i) generated by the coefficients. Multiplicativity of
the contents (“Gauss’ Lemma”) then implies that the contents of P (t) is equal to (1), hence P (t) ∈ Z[i][t].
As the coefficients of Q(t) = Qα+ε(1+δi)(t) are the same as those of P (t), only written backwards, we also
have Q(t) ∈ Z[i][t].

Substituting t = 0 to the second line of (9.3.10.1) yields

cα+ε(1+δi) · cα−ε(1+δi) = −c2α. (9.3.10.2)

As

(α+ ε(1 + δi))(α− ε(1 + δi)) = α2 − 2δi ≡ −α2 (mod (2 + 2i)),

we have

dα+ε(1+δi) · dα−ε(1+δi) = −d2
α. (9.3.10.3)

As cβ = dβ for β = α, α−ε(1+δi) by induction hypothesis, the formulas (9.3.10.2-3) imply that cβ = dβ also
for β = α+ε(1+δi). This concludes the induction step (the exact values of ε, δ depend on the circumstances).

(9.3.11) Corollary (Product Formula (P)). If α ∈ Z[i], 2 - Nα, then∏
u∈Σα

sl4(u) = (−1)
Nα−1

4 α · dα. (P )

In particular, if α ≡ 1 (mod (2 + 2i)), then∏
u∈Σα

sl4(u) = (−1)
Nα−1

4 α.

(9.3.12) Corollary. If α ∈ Z[i], 2 - Nα and u ∈ 1
αL, then sl(u) is an algebraic integer.

9.4 The Congruence Formula for sl(z)

(9.4.1) If α ∈ Z[i] is an irreducible element with 2 - Nα, then 0.4.3.0 implies that the residue field
k(α) = Z[i]/αZ[i] is a finite field with Nα = pa elements, where p ∈ N is the unique prime number divisible
by α and a = 1 (resp. a = 2) if p ≡ 1 (mod 4) (resp. if p ≡ 3 (mod 4)).

(9.4.2) Proposition. If α ∈ Z[i], 2 - Nα, put

Rα(t) =
∏

u∈( 1
αL/L)−{0}

(
t− sl

(
u+ Ω

2

)) (
t− sl

(
u+ iΩ

2

))
=
∏
u∈Σα

(
t4 − sl4

(
u+ Ω

2

)) (
t4 − sl4

(
u+ iΩ

2

))
.

Then

sl′(αz) =
Rα(sl(z))
Q2
α(sl(z))

sl′(z) (9.4.2.1)
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and Rα(t) ∈ Z[i][t].

Proof. It follows from

div(y) =
∑
ζ4=1

((ζ, 0))− 2(O+)− 2(O−) ∈ Div(V (C)),

that

div(sl′(z)) =
∑
ζ4=1

(
ζΩ
2

)
− 2

(
1+i
2 Ω

)
− 2

(
1−i

2 Ω
)
∈ Div(C/LV ).

In other words, sl′(z) has simple zeros at (Ω
2 + L)

•
∪( iΩ2 + L) and double poles at 1+i

2 Ω + L. As in the proof
of 9.3.7, this implies that

div
(
sl′(αz)
sl′(z)

)
= div

(
Rα(sl(z))
Q2
α(sl(z))

)
,

showing that the ratio of the left and right hand sides of (9.4.2.1) is a constant. As the value of the L.H.S.
(resp. the R.H.S.) at z = 0 is equal to 1 (resp. to Rα(0)), it remains to prove that Rα(0) = 1; this is a
consequence of (9.3.2.1) for z = u+ iΩ

2 .
The formula 9.3.8.1 implies that Rα(t) ∈ Q(i)[t]; it remains to show that each root of Rα(t) is an

algebraic integer. Indeed, such a root is of the form sl(u+ ζΩ
2 ), where u ∈ 1

αL and ζ ∈ {±1,±i}, hence it is
also a root of the polynomial

Pα(t)− dαsl(αu+ ζΩ
2 )Qα(t) = Pα(t)− dαsl( ζ

′Ω
2 )Qα(t) = Pα(t)− dαζ ′Qα(t) = 0

(for some ζ ′ ∈ {±1,±i}), which is a monic polynomial with coefficients in Z[i][t] (by 9.3.10). Proposition
follows.

(9.4.3) Proposition (Congruence Formula (C)). If α ∈ Z[i] is irreducible and 2 - Nα, then

Pα(t) ≡ tNα (modαZ[i][t]), Qα(t) ≡ 1 (modαZ[i][t]). (C)

Proof. Let us try to generalize the “elementary” proof of 9.2.3. Combining (9.3.8.1) with (9.4.2.1), we obtain

P ′αQα − PαQ′α = αdαQ
2
αRα ≡ 0 (modαZ[i][t]). (9.4.3.1)

As

Pα(t) = tNα + a1t
Nα−1 + · · ·+ aNα−1t, Qα(t) = aNα−1t

Nα−1 + · · ·+ a1t+ 1, aNα−1 = αdα,

considering the coefficients of the L.H.S. of (9.4.2.1) modulo αZ[i] yields consecutively

−(Nα− 1)aNα−1 ≡ 0 =⇒ aNα−1 ≡ 0 (modαZ[i])
−(Nα− 2)aNα−2 ≡ 0 =⇒ aNα−2 ≡ 0 (modαZ[i])

. . .

−(Nα− p+ 1)aNα−p+1 ≡ 0 =⇒ aNα−p+1 ≡ 0 (modαZ[i]),

which proves the claim if Nα = p (i.e. if p ≡ 1 (mod 4)).
It is not clear (at least to the author of these notes) whether one can prove the Proposition by this

method also in the case Nα = p2. Instead, we shall generalize the method of proof of 9.2.8. By 9.3.12, the
values sl(u) (u ∈ 1

αL) are contained in the ring of integers OK of the number field K = Q(i)(sl(u) |u ∈ 1
αL).

According to 9.3.7 and 9.3.10, we have
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∏
u∈( 1

αL/L)−{0}
sl(u) = αcα = αdα, dα ∈ {±1,±i},

which implies that there exists a prime ideal p|α in OK and u0 ∈
(

1
αL/L

)
−{0} such that p|sl(u0). For each

u ∈
(

1
αL/L

)
− {0} there exists β ∈ Z[i] satisfying 2 - Nβ and u ≡ βu0 (modL).

As p|sl(u0) and Pβ(t), Qβ(t) ∈ Z[i][t], it follows that

Pβ(sl(u0)) ≡ Pβ(0) ≡ 0 (mod p), Qβ(sl(u0)) ≡ Qβ(0) ≡ 1 (mod p),

hence each non-zero root of Pα(t) satisfies

sl(u) = sl(βu0) =
Pβ(sl(u0))
dβQβ(sl(u0))

≡ 0 (mod p); (9.4.3.2)

thus

Pα(t) ≡ tNα (mod pOK [t]),

which implies the same congruence modulo (pOK ∩ Z[i])[t] = αZ[i][t], as required. The desired congruence
for Qα(t) follows from (9.3.1.1).

(9.4.4) Corollary. Assume that α ∈ Z[i] is irreducible, 2 - Nα, K is a number field containing Q(i) and p
a prime ideal of OK dividing α. If z ∈ C and sl(z) ∈ OK , then sl(αz) ∈ OK and

dαsl(αz) ≡ sl(z)Nα (mod p)

(with dα ∈ {±1,±i} defined in 9.3.9).

(9.4.5) Proposition. Assume that α ∈ Z[i] is irreducible, 2 - Nα. Then

Rα(t) ≡ (1− t4)
Nα−1

2 (modαZ[i][t]).

Proof. Using the notation from the proof of 9.4.3, the formulas

sl
(
z + Ω

2

)
=

sl′(z)
1 + sl2(z)

, sl
(
z + iΩ

2

)
=

isl′(z)
1− sl2(z)

together with (9.4.3.2) imply that, for all u ∈ Σα,

sl4
(
u+ Ω

2

)
≡ sl4

(
u+ iΩ

2

)
≡ sl′(u)4 ≡ (1− sl4(u))2 ≡ 1 (mod p),

hence

Rα(t) ≡ (t4 − 1)
Nα−1

2 ≡ (1− t4)
Nα−1

2 (mod pOK [t]) =⇒ Rα(t) ≡ (1− t4)
Nα−1

2 (modαZ[i][t]).

(9.4.6) Proposition. Assume that α ∈ Z[i] is irreducible, 2 - Nα; put ψ(α) = dα · α ≡ 1 (mod (2 + 2i)),
where dα (∈ {±1,±i}) is as in 9.3.9. Then the group law on the curve V satisfies

[ψ(α)](x, y) ≡ (xNα, yNα) (modα)

(this congruence should be interpreted as in 8.4.7). In particular, if α ≡ 1 (mod (2 + 2i)), then 8.4.9 holds.

Proof. By 9.3.7, 9.3.10 and (9.4.2.1), we have
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[α](x, y) =
(

Pα(x)
dαQα(x)

,
Rα(x)
Q2
α(x)

y

)
.

The congruences 9.4.3,5 then yield

[ψ(α)](x, y) =
(
Pα(x)
Qα(x)

,
Rα(x)
Q2
α(x)

y

)
≡ (xNα, (1− x4)

Nα−1
2 y) = (xNα, yNα) (modα).

9.5 Biquadratic Reciprocity Law

Let us try to imitate the theory from 9.1-2 in the context of Gaussian integers Z[i]. Our analytic approach
will disregard many arithmetic aspects of the theory; these can be found, for example, in [Co] or [Ir-Ro].

(9.5.1) Let α ∈ Z[i] be as in 9.4.1. As ζ 6≡ 1 (modα) for any ζ ∈ {−1,±i}, the reduction modulo α induces
an injective homomorphism of abelian groups

{±1,±i} ↪→ k(α)∗ = (Z[i]/αZ[i])∗. (9.5.1.1)

As k(α)∗ is a cyclic group order Nα − 1, it follows that Nα ≡ 1 (mod 4) and that the following definition
makes sense:

(9.5.2) Definition (Biquadratic residue symbol). If α ∈ Z[i] is irreducible, 2 - Nα, a ∈ Z[i] and α - a,
denote by

(
a
α

)
4

the unique element of {±1,±i} satisfying the congruence( a
α

)
4
≡ a

Nα−1
4 (modα)

(“generalized Euler’s criterion”).

(9.5.3) Lemma. (i) The biquadratic residue symbol modulo α defines an isomorphism of abelian groups(
•

α

)
4

: k(α)∗/k(α)∗4 ∼−→ {±1,±i}.

(ii) If α - ab (a, b ∈ Z[i]), then(
ab

α

)
4

=
( a
α

)
4

(
b

α

)
4

,

(
a

α

)
4

=
( a
α

)
4

=
( a
α

)−1

4
,

(
i

α

)
4

= i
Nα−1

4 .

(iii) If Nα = p ≡ 1 (mod 4) and a ∈ Z, p - a, then( a
α

)
4

= 1 ⇐⇒ a (mod p) ∈ F∗4p ⇐⇒ (∃x ∈ Z) x4 ≡ a (mod p).

(iv) If Nα = p2, p ≡ 3 (mod 4) (i.e. α ∈ {±p,±ip}) and a ∈ Z, p - a, then( a
α

)
4

= 1.

Proof. (i),(ii) This follows from the definitions (and the fact that k(α)∗ is cyclic of order Nα− 1). (iii) is a
special case of (i). Finally, (iv) is a consequence of

a
p2−1

4 = (a
p+1

4 )p−1 ≡ 1 (mod pZ).

(9.5.4) Lemma. Let α ∈ Z[i] be irreducible, 2 - Nα; let Σα be as in 9.3.1. Fix a ∈ Z[i] not divisible by α.
For each u ∈ Σα there is a unique pair ζu ∈ {±1,±i} and u′ ∈ Σα satisfying au = ζuu

′; then∏
u∈Σα

ζu =
( a
α

)
4
.

Proof. The proof of 9.1.3 applies with straightforward modifications.
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(9.5.5) Biquadratic Reciprocity Law. Let α, β ∈ Z[i] be irreducible, α - β and α ≡ β ≡ 1 (mod (2 + 2i)).
Then (

β

α

)
4

=
(
α

β

)
4

(−1)
Nα−1

4 ·Nβ−1
4 .

Proof. We shall follow the argument from 9.2.9. Fix Σα as in 9.3.1 and put

S =
∏
u∈Σα

sl(u), S′ =
∏
u∈Σα

sl(βu) ∈ OK ,

where K = Q(i, sl(u) |u ∈ 1
αL/L). As in (9.2.9.1), the identity sl(ζz) = ζsl(z) (ζ ∈ {±1,±i}) together with

9.5.4 imply that (
β

α

)
4

S = S′.

Fix a prime ideal p of OK dividing β. The congruence formula (C) in the form 9.4.4 then yields(
β

α

)
4

S = S′ ≡ SNβ (mod p).

According to the product formula (P) from 9.3.11,

S4 = (−1)
Nα−1

4 α

is not divisible by p, hence(
β

α

)
4

≡ SNβ−1 = (S4)
Nβ−1

4 = (−1)
Nα−1

4 ·Nβ−1
4 α

Nβ−1
4 (mod p),

which is in turn congruent to (
β

α

)
4

≡ (−1)
Nα−1

4 ·Nβ−1
4

(
α

β

)
4

(mod p).

Both sides of this congruence are elements of {±1,±i}; as p ∩ Z[i] = βZ[i], it follows that(
β

α

)
4

≡ (−1)
Nα−1

4 ·Nβ−1
4

(
α

β

)
4

(modβZ[i]).

However, both sides of the latter congruence must be equal, by the injectivity of (9.5.1.1) for β.

(9.5.6) Exercise. Irreducible elements α ∈ Z[i] satisfying α ≡ 1 (mod (2 + 2i)) are the following:
(i) α = u± iv, where u, v ∈ Z, Nα = u2 + v2 = p ≡ 1 (mod 4) is a prime, v ≡ 0 (mod 2), u ≡ v + 1 (mod 4)
(the pair u± iv is determined by p uniquely).
(ii) α = −p, where p ≡ 3 (mod 4) is a prime.

(9.5.7) Example: Let us compute
(−3
α

)
4

for α = u± iv as in 9.5.6(i). Applying 9.5.5, we obtain(
−3
α

)
4

=
(
α

−3

)
4

.

There are 8 residue classes in (Z[i]/3Z[i])∗, represented by a = ±1,±i,±(1 + i),±(1− i). As(
a

−3

)
4

≡ a2 (mod 3Z[i]),

it follows that(
±1
−3

)
4

= 1,
(
±i
−3

)
4

= −1,
(
±(1 + i)
−3

)
4

= −i,
(
±(1− i)
−3

)
4

= i,
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hence

(∃x ∈ Z) x4 ≡ −3 (mod p) ⇐⇒
(
−3
α

)
4

= 1 ⇐⇒ α ≡ ±1 (mod 3Z[i]) ⇐⇒

⇐⇒ u ≡ ±1 (mod 3), v ≡ 0 (mod 3) ⇐⇒ v ≡ 0 (mod 6) ⇐⇒ (∃a, b ∈ Z) p = a2 + (6b)2.

(9.5.8) Exercise. Show that, for a prime number p ≡ 1 (mod 4), p 6= 5,

(∃x ∈ Z) x4 ≡ 5 (mod p) ⇐⇒ (∃a, b ∈ Z) p = a2 + (10b)2.

(9.5.9) If p is a prime number satisfying p ≡ 3 (mod 4), then the multiplicative group (Z/pZ)∗ is cyclic of
order p− 1, where (p− 1, 4) = 2. This implies that F∗4p = F∗2p , hence

(∃x ∈ Z) x4 ≡ a (mod p) ⇐⇒ (∃y ∈ Z) y2 ≡ a (mod p) ⇐⇒
(
a

p

)
= 1 (a ∈ Z, p - a).

(9.5.10) Similarly, if p is a prime number satisfying p ≡ 2 (mod 3), then (p− 1, 3) = 1, hence F∗3p = F∗p. In
other words, the congruence

x3 ≡ a (mod p) (9.5.10.1)

has a (unique) solution modulo p for every a ∈ Z.
(9.5.11) On the other hand, if p ≡ 1 (mod 3), then the solvability of (9.5.10.1) depends on a in a non-trivial
way. One can define the Cubic residue symbol and prove the Cubic Reciprocity Law by working with Z[ρ]
(where ρ = e2πi/3) instead of Z[i] (see [Co], [Ir-Ro]).

(9.5.12) Exercise. Prove the Cubic Reciprocity Law using the function ℘(z) associated to a lattice L′ =
Z[ρ] · Ω′ for suitable Ω′ (e.g. such that ℘′(z)2 = 4℘(z)3 − 4).

10. Group law on smooth cubic curves

10.1 The geometric definition of the group law

(10.1.1) Let K be a field and F = F (X,Y, Z) ∈ K[X,Y, Z] a homogeneous polynomial of degree deg(F ) = 3.
We assume that the corresponding cubic (projective) plane curve C : F = 0 is smooth (this implies that F
is irreducible over any extension of K).

Fix a point O ∈ C(K). For P,Q ∈ C(K), we define P ∗Q,P �Q ∈ C(K) as in 7.5.6: P ∗Q is the third
intersection point of C with the line PQ (resp. with the tangent to C at P ) if P 6= Q (resp. P = Q), and

P �Q = O ∗ (P ∗Q). (10.1.1.1)

P

Q P*Q
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(10.1.2) Theorem. (C(K),�) is an abelian group with neutral element O.

(10.1.3) It is easy to check that P ∗Q lies indeed in C(K), so the only non-trivial point is the associativity
law for P,Q,R ∈ C(K):

(P �Q)�R ?= P � (Q�R) (10.1.3.1)

We shall explain in 10.2.6 below how to deduce (10.1.3.1) from a suitable configuration theorem for points
on cubic curves.

(10.1.4) Exercise. Show that the following statements are equivalent:

O is an inflection point of C ⇐⇒ O ∗O = O ⇐⇒ (∀P ∈ C(K)) P ∗O = −P.

10.2 Configuration theorems

We begin by recalling two classical geometric results.

(10.2.1) Theorem of Pappus. Let P1, P2, P3 (resp. Q1, Q2, Q3) be two triples of collinear points in the
plane. Let

Rk = PiQj ∩ PjQi ({i, j, k} = {1, 2, 3})
be the intersection points of the pairs of lines PiQj and PjQi. Then the points R1, R2, R3 are collinear.

P
1

P
2

P
3

Q
1

Q
2

Q
3

R
1

R
2

R
3

(10.2.2) Pascal’s Theorem. Let P1, P2, P3, Q1, Q2, Q3 be six distinct points on a conic C. Then the
points R1, R2, R3 (defined as in 10.2.1) are collinear.

P
1

2
P

P
3

Q
1

Q
2

Q
3

R
1

R
2

R
3

C
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(10.2.3) Theorem of Pappus is a special case of Pascal’s Theorem, when the conic C is reducible. Pascal’s
Theorem, in turn, is a special case of the following result on cubic curves.

(10.2.4) Theorem of Cayley-Bacharach for cubic curves (weak wersion). Let C1, C2 ⊂ P2 be
projective cubic curves over an algebraically closed field K = K such that C1(K) ∩ C2(K) consists of 9
distinct points S1, . . . , S9 ∈ C(K). If D ⊂ P2 is another projective cubic curve such that P1, . . . , P8 ∈ D(K),
then P9 ∈ D(K).

(10.2.5) Cayley-Bacharach =⇒ Pascal. In the situation of 10.2.2, let

C1 : P1Q3 ∪ P2Q1 ∪ P3Q2, C2 : P3Q1 ∪ P1Q2 ∪ P2Q3, D : C ∪R1R2.

As

C1 ∩ C2 = {P1, P2, P3, Q1, Q2, Q3, R1, R2, R3}, C1 ∩ C2 − {R3} ∈ D,

it follows from 10.2.4 that

R3 ∈ D =⇒ R3 ∈ R1R2.

(10.2.6) Cayley-Bacharach =⇒ associativity of �. In the situation of 10.1.3 (after replacing K by its
algebraic closure), consider the cubic curves

C1 = O(P �Q) ∪QR ∪ P (Q�R), C2 = O(Q�R) ∪ PQ ∪R(P �Q), D = C.

DIAGRAM UNDER CONSTRUCTION

As

C1 ∩ C2 = {O,P,Q,R, P ∗Q,P �Q,Q ∗R,Q�R, S}, S = P (Q�R) ∩R(P �Q), (10.2.6.1)

it follows from 10.2.4 – assuming that the 9 points in (10.2.6.1) are distinct – that

S ∈ C =⇒ P ∗ (Q�R) = (P �Q) ∗R =⇒ P � (Q�R) = (P �Q)�R.

If the points in (10.2.6.1) are not distinct, note that both sides of (10.1.3.1) are given by a morphism
C×C×C −→ C (cf. II.1.2.6 below). We have shown that the two morphisms agree on a dense open subset;
as C is projective (hence separated), they must agree everywhere.

Alternatively, one can appeal to the “strong version” of the Cayley-Bacharach Theorem:

(10.2.7) Theorem of Cayley-Bacharach. Let C,D,E ⊂ P2 be curves of degrees deg(C) = m, deg(D) =
n, deg(E) ≤ m+ n− 3 over an algebraically closed field K. Then:
(i) (weak wersion) If C(K) ∩D(K) consists of mn distinct points P1, . . . , Pmn and P1, . . . , Pmn−1 ∈ E(K),
then Pmn ∈ E(K).
(ii) (strong wersion) Assume that the intersection divisor C(K) ∩D(K) =

∑
j∈J nj(Pj), where each Pj ∈

C(K) is a smooth point of C. If the local intersection multiplicities of C and E satisfy

(C · E)Pj ≥

{
nj , j ∈ J − {j0}

nj − 1, j = j0

for some j0 ∈ J , then
(C · E)Pj0 ≥ nj0 .
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(10.2.8) Exercise. Deduce Pascal’s Theorem 10.2.2 from Bézout’s Theorem (see [Ki], 3.15).

10.3 Residues

Rather surprisingly, 10.2.7 can be proved using a two-dimensional residue theorem. In this section we shall
indicate the argument for 10.2.7(i). The general theory of multidimensional residues in the analytic context
(i.e. over K = C), as well as a proof of 10.2.7(ii) in this case, can be found in ([Gr-Ha], Ch. 5). The algebraic
theory of residues forms a part of the Grothendieck Duality Theory, which is discussed in [Al-Kl] (and also
in [Gr-Ha], Ch. 5).
(10.3.1) Recall the statement of Exercise I.2.2.2: if F ∈ C[x] is a polynomial of degree deg(F ) ≥ 2 with d
distinct roots x1, . . . , xd ∈ C and g ∈ C[x] a polynomial of degree deg(g) ≤ d− 2, then

d∑
j=1

g(xj)
F ′(xj)

= 0. (10.3.1.1)

One can deduce (10.3.1.1) from the residue formula for the meromorphic differential

ω =
g(z) dz
F (z)

∈ Ω1
mer(P

1(C))

on P1(C). As t = 1/z is a local coordinate at the point ∞, it follows from

dz = −t−2 dt, ord∞(g) = −deg(g) ≥ 2− d, ord∞(1/F ) = deg(F ) = d

that

ord∞(ω) ≥ (−2) + (2− d) + d ≥ 0,

i.e. ω is holomorphic at ∞. The Residue Theorem I.3.3.10 then gives

0 =
∑

x∈P1(C)

resx(ω) =
∑
x∈C

resx(ω) =
d∑
j=1

resxj (ω) =
d∑
j=1

g(xj)
F ′(xj)

.

A higher-dimensional version of (10.3.1.1) is the following formula:

(10.3.2) Theorem (Jacobi). Let F1, . . . , Fn ∈ C[x1, . . . , xn] be polynomials of degrees deg(Fj) = dj ≥ 1.
Assume that the hypersurfaces Zj = {Fj = 0} ⊂ Cn intersect at exactly d = d1 · · · dn distinct points
Pα ∈ Cn (1 ≤ α ≤ d). Let g ∈ C[x1, . . . , xn] be a polynomial of degree deg(g) ≤ (d1 + · · · + dn) − (n + 1).
Then

d∑
α=1

g(Pα)
JF (Pα)

= 0,

where JF = det(∂Fi/∂xj) is the Jacobian of F = (F1, . . . , Fn) : Cn −→ Cn.

Proof (sketch). Firstly, the n-dimensional variant of Bézout’s Theorem implies that the local intersection
multiplicity of the hypersurfaces Zj (j = 1, . . . , n) at each point Pα is equal to one, which is equivalent to the
non-vanishing of JF (Pα). Secondly, the assumption on deg(g) is equivalent to the fact that the meromorphic
differential n-form

ω =
g(x) dx1 ∧ · · · ∧ dxn
F1(x) · · ·Fn(x)

=
g(x)
JF (x)

dF1 ∧ · · · ∧ dFn
F1 · · ·Fn

on Pn(C) has no pole along the hyperplane at infinity Pn(C) − Cn. The n-dimentional residue theorem
then implies

0 =
d∑

α=1

resPα(ω) =
d∑

α=1

g(Pα)
JF (Pα)

resPα

(
dF1 ∧ · · · ∧ dFn

F1 · · ·Fn

)
=

d∑
α=1

g(Pα)
JF (Pα)

,

where the last equality follows from the fact that F1, . . . , Fn form a system of local coordinates at each Pα.
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(10.3.3) Corollary. If g(Pα) = 0 for α = 1, . . . , d− 1, then g(Pd) = 0.

(10.3.4) In particular, for n = 2 we obtain the variant 10.2.7(i) of the Cayley-Bacharach Theorem with
C1 : F1 = 0, C2 : F2 = 0, E : g = 0.
(10.3.5) As explained in ([Gr-Ha], 5.2), a variant of the above calculation can be used to prove 10.2.7(ii).

(THIS IS VERSION 20/9/2004)
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1983, 1984, 1991.
[MK] V.K. Murty, Introduction to abelian varieties, CRM Monograph Series 3, American Math. Society,
1993.
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